|
|
Extending a release-and-recapture scheme to single atom optical tweezer for effective temperature evaluation |
He Jun(何军), Yang Bao-Dong(杨保东), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民)† |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-gradient MOT and then transfer the trapped single atom into a 1064-nm microscopic optical tweezer. The energy of the single atom trapped in the tweezer is further reduced by polarization gradient cooling (PGC) and the effective temperature is evaluated by extending the R&R technique to a single atom tweezer. The typical effective temperature of a single atom in the tweezer is improved from about 105 μK to about 17 μK by applying the optimum PGC phase.
|
Received: 08 December 2010
Revised: 22 February 2011
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
87.80.Cc
|
(Optical trapping)
|
|
42.50.-p
|
(Quantum optics)
|
|
Cite this article:
He Jun(何军), Yang Bao-Dong(杨保东), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民) Extending a release-and-recapture scheme to single atom optical tweezer for effective temperature evaluation 2011 Chin. Phys. B 20 073701
|
[1] |
Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A and Meschede D 2004 Phys. Rev. Lett. 93 150501
|
[2] |
Darquie B, Jones M P A, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A and Grangier P 2005 Science 309 454
|
[3] |
Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 030404
|
[4] |
Chu S, Bjorkholm J E, Ashkin A and Cable A 1986 Phys. Rev. Lett. 57 314
|
[5] |
Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. A 47 R4567
|
[6] |
Grimm R, Weidemuller M and Ovchinnikov Y 2000 Adv. At. Mol. Opt. Phys. 42 95
|
[7] |
Neuman K C and Block S M 2004 Rev. Sci. Instrum. 75 2787
|
[8] |
He X D, Xu P, Wang J and Zhan M S 2009 Opt. Express 17 21007
|
[9] |
He X D, Xu P, Wang J and Zhan M S 2009 Opt. Express 18 13586
|
[10] |
Xia T, Zhou S Y, Chen P, Li L, Hong T and Wang Y Z 2010 Chin. Phys. Lett. 27 023701
|
[11] |
Weber M, Volz J, Saucke K, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. A 73 043406
|
[12] |
Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rauschenbeutel A and Meschede D 2006 Phys. Rev. A 72 023406
|
[13] |
Jones M P A, Beugnon J, Gaetan A, Zhang J, Messin G, Browaeys A and Grangier P 2007 Phys. Rev. A 75 040301
|
[14] |
Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nature Phys. 5 110
|
[15] |
Gaetan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nature Phys. 5 115
|
[16] |
Zuo Z, Fukusen M, Tamaki Y, Watanabe T, Nakagawa Y and Nakagawa K 2009 Opt. Express 17 22898
|
[17] |
Tuchendler C, Lance A M, Browaeys A, Sortais Y R P and Grangier P 2008 Phys. Rev. A 78 033425
|
[18] |
Alt W, Schrader D, Kuhr S, Muller M, Gomer V and Meschede D 2003 Phys. Rev. A 67 033403
|
[19] |
Fuhrmanek A, Lance A M, Tuchendler C, Grangier P, Sortais Y R P and Browaeys A 2010 New J. Phys. 12 053028
|
[20] |
Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
|
[21] |
Wang J, He J, Qiu Y, Yang B D, Zhao J Y, Zhang T C and Wang J M 2008 Chin. Phys. B 17 2062
|
[22] |
He J, Wang J, Yang B D, Zhang T C and Wang J M 2009 Chin. Phys. B 18 3404
|
[23] |
Wang J M, He J, Yang B D, Zhang T C and Peng K C 2010 Proc. SPIE 7727 77270U
|
[24] |
He J, Yang B D, Zhang T C and Wang J M 2011 J. Phys. D: Appl. Phys. 44 135102
|
[25] |
Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer-Verlag)
|
[26] |
Kerman A J, Vuletic V, Chin C and Chu S 2000 Phys. Rev. Lett. 84 439
|
[27] |
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2004 Nature 428 50
|
[28] |
Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
|
[29] |
Ma H Y, Cheng H D, Wang Y Z and Liu L 2008 Chin. Phys. B 17 4180
|
[30] |
Kastberg A, Phillips W D, Rolston S L, Spreeuw R J C and Jessen P S 1995 Phys. Rev. Lett. 74 1542
|
[31] |
Poli N, Brecha R J, Roati G and Modugno G 2002 Phys. Rev. A 65 021401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|