Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040504    DOI: 10.1088/1674-1056/23/4/040504
GENERAL Prev   Next  

Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control

Liu Dan-Feng (刘丹峰), Wu Zhao-Yan (吴召艳), Ye Qing-Ling (叶青伶)
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is investigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Keywords:  structure identification      network      complex-variable chaotic system      impulsive control  
Received:  31 May 2013      Revised:  11 September 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11226242) and the Natural Science Foundation of Jiangxi Province of China (Grant No. 20122BAB211006).
Corresponding Authors:  Wu Zhao-Yan     E-mail:  zhywu7981@gmail.com
About author:  05.45.Xt; 05.45.-a

Cite this article: 

Liu Dan-Feng (刘丹峰), Wu Zhao-Yan (吴召艳), Ye Qing-Ling (叶青伶) Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control 2014 Chin. Phys. B 23 040504

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Wang X F and Chen G R 2002 IEEE Trans. Circuits Syst. I 49 54
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U Phys. Rep. 424 175
[4] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[5] Chen G R, Wang X F and Li X 2012 Introduction to Complex Networks: Models, Structures and Dynamics (Beijing: High Education Press)
[6] Duan Z S, Chen G R and Huang L 2008 Phys. Lett. A 372 3741
[7] Wang X F and Chen G 2002 Physica A 310 521
[8] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[9] Song Q and Cao J D 2010 IEEE Trans. Circuits Syst. I 57 672
[10] Li K Z, He E, Zeng Z R and Tse C K 2013 Chin. Phys. B 22 070504
[11] Wu Z Y and Fu X C 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1628
[12] Deng L P and Wu Z Y 2012 Commun. Theor. Phys. 58 525
[13] Zheng S, Wang S G, Dong G G and Bi Q S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 284
[14] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[15] Yu D C, Righero M and Kocarev L 2006 Phys. Rev. Lett. 97 188701
[16] Wu X Q 2008 Physica A 387 997
[17] Wang S G and Zheng S 2013 Chin. Phys. B 22 070503
[18] Liu H, Lu J A, Lü J H and Hill D J 2009 Automatica 45 1799
[19] Zhao J C, Li Q, Lu J A and Jiang Z P 2010 Chaos 20 023119
[20] Guo S J and Fu X C 2010 Commun. Theor. Phys. 54 181
[21] Xu Y H, Zhou W N, Fang J A and Sun W 2011 Commun. Nonlin. Sci. Numer. Simul. 16 3337
[22] Rao P C, Wu Z Y and Liu M 2012 Nonlinear Dyn. 67 1729
[23] Wu Z Y and Fu X C 2013 IET Control Theory Appl. 7 1269
[24] Chen Y S, Hwang R R and Chang C C 2010 Phys. Lett. A 374 2254
[25] Wan X J and Sun J T 2011 Math. Comput. Simul. 81 1609
[26] Li C X, Shi J P and Sun J T 2011 Nonlinear Anal.: TMA 74 3099
[27] Wang S G and Yao H X 2011 Chin. Phys. B 20 090513
[28] Lu J Q, Ho D W C, Cao J D and Kurths J 2011 IEEE Trans. Neural Netw. 22 329
[29] Liu J G 2013 Chin. Phys. B 22 0605110
[30] Li C L, Tong Y N, Li H M and Su K L 2012 Phys. Scr. 86 055003
[31] Chen Y S and Chang C C 2012 Nonlinear Dyn. 70 1795
[32] Fowler A C, Gibbon J D and McGuinness M J 1982 Physica D 4 139
[33] Mahmoud G M, Bountis T and Mahmoud E E 2007 Int. J. Bifur. Chaos 17 4295
[34] Mahmoud G M, Aly S A and Farghaly A A 2007 Chaos, Solitons and Fractals 33 178
[35] Wu Z Y, Chen G R and Fu X C 2010 Chaos 22 023127
[36] Wu Z Y and Fu X C 2013 Int. J. Mod. Phys. C 24 1350007
[37] Horn R A and Johnson C R 1990 Matrix Analysis (New York: Cambridge University Press)
[38] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[5] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[6] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[13] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[14] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[15] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
No Suggested Reading articles found!