ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spatiotemporal binary interaction and designer quasi-particle condensates |
Ramaswamy Radhaa, Pattu Sakthi Vinayagama, Hyun Jong Shinb, Kuppuswamy Porsezianc |
a Centre for Nonlinear Science, Post Graduate and Research Department of Physics, Government College for Women (Autonomous), Kumbakonam 612001, India; b Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea; c Department of Physics, Pondicherry University, Pondicherry 605014, India |
|
|
Abstract We introduce a new integrable model to investigate the dynamics of two component quasi-particle condensates with spatiotemporal interaction strengths. We derive the associated Lax pair of the coupled Gross–Pitaevskii (GP) equation and construct matter wave solitons. We show that the spatiotemporal binary interaction strengths not only facilitate the stabilization of the condensates, but also enables one to fabricate condensates with desirable densities, geometries, and properties, leading to the so-called “designer quasi-particle condensates”.
|
Received: 21 June 2013
Revised: 29 August 2013
Accepted manuscript online:
|
PACS:
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the UGC, DAE-NBHM, and DST, Government of India. |
Corresponding Authors:
Ramaswamy Radha
E-mail: radha_ramaswamy@yahoo.com
|
Cite this article:
Ramaswamy Radha, Pattu Sakthi Vinayagam, Hyun Jong Shin, Kuppuswamy Porsezian Spatiotemporal binary interaction and designer quasi-particle condensates 2014 Chin. Phys. B 23 034214
|
[1] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[2] |
Davis K B, Mewes M O, Andrews M R, VanDruten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[3] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[4] |
Gross E P 1961 Nuovo Cimento 20 454
|
[5] |
Gross E P 1963 J. Math. Phys. 4 195
|
[6] |
Pitaevskii L P 1961 Zh. Eksp. Teor. Fiz. 40 646
|
[7] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[8] |
Radha R and Ramesh Kumar V 2007 Phys. Lett. A 370 46
|
[9] |
Radha R, Ramesh Kumar V and Porzeian K 2008 J. Phys. A: Math. Theor. 41 315209
|
[10] |
Ramesh Kumar V, Radha R and Panigrahi P K 2008 Phys. Rev. A 77 023611
|
[11] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[12] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Solomon C 2002 Science 296 1290
|
[13] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2003 New J. Phys. 5 73
|
[14] |
Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
|
[15] |
Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
|
[16] |
Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
|
[17] |
Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
|
[18] |
Nathan Kutz J 2009 Physica D 238 1468
|
[19] |
MiddelKamp S, Chang J J, Hamner C, Carretero-Gonzalez R, Kevrekidis P G, Achilleos V, Frantzeskakis D J, Schmelcher P and Engels P 2011 Phys. Lett. A 375 642
|
[20] |
Theocharis G, Schmelcher P, Kevrekidis P G and Frantzeskakis D J 2005 Phys. Rev. A 72 033614
|
[21] |
Rajendran S, Muruganandam P and Lakshmanan M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145307
|
[22] |
Ramesh Kumar V, Radha R and Wadati M 2010 Phys. Lett. A 374 3685
|
[23] |
Rodas-Verde M I, Michinel H and Perez-Garcia V M 2005 Phys. Rev. Lett. 95 153903
|
[24] |
Carpentier A V, Michinel H, Rodas-Verde M I and Perez-Garcia V M 2006 Phys. Rev. A 74 013619
|
[25] |
Shin H J, Radha R and Ramesh Kumar V 2011 Phys. Lett. A 375 2519
|
[26] |
He J S, Mei J and Li Y S 2007 Chin. Phys. Lett. 24 2157
|
[27] |
He J S and Li Y S 2011 Stud. Appl. Math. 126 1
|
[28] |
Wang Y Y, He J S and Li Y S 2011 Commun. Theor. Phys. 56 995
|
[29] |
Xu S W, He J S and Wang L H 2012 Europhys. Lett. 97 30007
|
[30] |
He X G, Zhao D, Li L and Luo H G 2009 Phys. Rev. E 79 056610
|
[31] |
Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
|
[32] |
Manakov S V 1974 Sov. Phys. JETP 38 248
|
[33] |
Chau L L, Shaw J C and Yen H C 1991 J. Math. Phys. 32 1737
|
[34] |
lizuka T and Wadati M 1997 J. Phys. Soc. Jpn. 66 2308
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|