Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030201    DOI: 10.1088/1674-1056/23/3/030201
GENERAL   Next  

Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion–advection equation with variable coefficients

Vikas Kumara, R. K. Guptab, Ram Jiwarib
a Department of Mathematics, D. A. V. College Pundari, Kaithal 136026, Haryana, India;
b School of Mathematics and Computer Applications, Thapar University, Patiala 147004, Punjab, India
Abstract  In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G’/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.
Keywords:  diffusion–advection equation      Lie group analysis      numerical solutions      extended (G’/G)-expansion method  
Received:  08 August 2013      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  04.20.Jb (Exact solutions)  
Corresponding Authors:  R. K. Gupta     E-mail:  rajeshgupta@thapar.edu

Cite this article: 

Vikas Kumar, R. K. Gupta, Ram Jiwari Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion–advection equation with variable coefficients 2014 Chin. Phys. B 23 030201

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[2] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer)
[3] Ovsyannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[4] Demetriou E, ChristouMA and Sophocleous C 2007 Appl. Math. Comput. 187 1333
[5] Singh K and Gupta R K 2006 Int. J. Eng. Sci. 44 241
[6] Kumar S, Singh K and Gupta R K 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1529
[7] Gupta R K and Singh K 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4189
[8] Goyal N and Gupta R K 2012 Phys. Scr. 85 015004
[9] Kumar V, Gupta R K and Jiwari R 2013 Chin. Phys. B 22 050201
[10] Khalique C M and Adem K R 2011 Math. Comput. Model. 54 184
[11] Johnpillai A G, Kara A H and Biswas A 2013 Appl. Math. Lett. 26 376
[12] Kaur L and Gupta R K 2013 Math. Meth. Appl. Sci. 36 584
[13] Gupta R K and Bansal A 2013 Appl. Math. Comput. 219 5290
[14] Wang M L, Li X and Zhang 2008 J. Phys. Lett. A 372 417
[15] Zhang S, Dong L, Ba J M and Sun Y N 2009 Phys. Lett. A 373 905
[16] Guo S and Zhou Y 2010 Appl. Math. Comput. 215 3214
[17] Li B Q and Ma Y L 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 144
[18] Alexander F J and Lebowitz J L 1990 J. Phys. A: Math. Gen. 23 375
[19] Alexander F J and Lebowitz J L 1994 J. Phys. A: Math. Gen. 27 683
[20] Saied E A and Abd El-Rahman R G 1998 J. Stat. Phys. 94 639
[21] Elwakil S A, Zahran M A and Sabry R 2005 ZAMP 56 986
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[3] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[4] Constructing (2+1)-dimensional N=1 supersymmetric integrable systems from the Hirota formalism in the superspace
Jian-Yong Wang(王建勇), Xiao-Yan Tang(唐晓艳), Zu-Feng Liang(梁祖峰). Chin. Phys. B, 2018, 27(4): 040203.
[5] New variable separation solutions for the generalized nonlinear diffusion equations
Fei-Yu Ji(吉飞宇), Shun-Li Zhang(张顺利). Chin. Phys. B, 2016, 25(3): 030202.
[6] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[7] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[8] Generalized symmetries of an N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system
Wang Jian-Yong (王建勇), Tang Xiao-Yan (唐晓艳), Liang Zu-Feng (梁祖峰), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(5): 050202.
[9] Conservation laws of the generalized short pulse equation
Zhang Zhi-Yong (张智勇), Chen Yu-Fu (陈玉福). Chin. Phys. B, 2015, 24(2): 020201.
[10] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping (刘萍), Zeng Bao-Qing (曾葆青), Yang Jian-Rong (杨建荣), Ren Bo (任博). Chin. Phys. B, 2015, 24(1): 010202.
[11] Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension
Qu Gai-Zhu (屈改珠), Zhang Shun-Li (张顺利), Li Yao-Long (李尧龙). Chin. Phys. B, 2014, 23(11): 110202.
[12] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[13] New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology
M. M. Khader, Sunil Kumar, S. Abbasbandy. Chin. Phys. B, 2013, 22(11): 110201.
[14] Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source
Ji Fei-Yu (吉飞宇), Yang Chun-Xiao (杨春晓). Chin. Phys. B, 2013, 22(10): 100202.
[15] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
No Suggested Reading articles found!