Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100202    DOI: 10.1088/1674-1056/22/10/100202
GENERAL Prev   Next  

Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source

Ji Fei-Yu (吉飞宇), Yang Chun-Xiao (杨春晓)
College of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
Abstract  By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut=(A(u)ux)x+∈B(u,ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approximate solutions to the resulting perturbed equations are constructed via examples.
Keywords:  quasi-linear diffusion equation      approximate derivative-dependent functional separable solution      approximate generalized conditional symmetry  
Received:  24 March 2013      Revised:  11 April 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10671156) and the Natural Science Foundation of Shaanxi Province of China (Grant No. SJ08A05).
Corresponding Authors:  Ji Fei-Yu     E-mail:  feiyuji@xauat.edu.cn

Cite this article: 

Ji Fei-Yu (吉飞宇), Yang Chun-Xiao (杨春晓) Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source 2013 Chin. Phys. B 22 100202

[1] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[2] Bluman G W and Anco S C 2004 Symmetry and Integration Methods for Differential Equations (New York: Springer-Verlag)
[3] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[4] Ma S H and Fang J P 2009 Z. Naturforsch. 64a 37
[5] Wang X X, Han Y L, Zhang M L and Jia L Q 2013 Chin. Phys. B 22 020201
[6] Zhao G L, Chen L Q, Fu J L and Hong F Y 2013 Chin. Phys. B 22 030205
[7] Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025
[8] Qu C Z 1997 Stud. Appl. Math. 99 107
[9] Bluman G W, Reid J D and Kumei S 1988 J. Math. Phys. 29 806
[10] Qu C Z 2007 J. Phys. A: Math. Theor. 40 1757
[11] Miller W 1977 Symmetry and Separation of Variables (Massachusetts: Addison-Wesley, Reading)
[12] Kalnins E G and Miller W 1985 J. Math. Phys. 26 1560
[13] Dolye P W and Vassiliou P J 1998 Int. J. Nonlinear Mech. 33 315
[14] Zhdanov R Z 1997 J. Math. Phys. 38 1197
[15] Cao C W 1990 Sci. China A: Phys. Mech. Astron. 33 528
[16] Lou S Y and Chen L L 1999 J. Math. Phys. 40 6491
[17] Qu C Z, Zhang S L and Liu R C 2000 Physica D 144 97
[18] Zhang S L, Lou S Y and Qu C Z 2003 J. Phys. A: Math. Gen. 36 12223
[19] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765
[20] Kevorkian J and Cole J D 1980 Perturbation Methods in Applied Mathematics (New York: Springer-Verlag)
[21] Baikov V A, Gazizov R K and Ibragimov N H 1991 J. Math. Sci. 55 1450
[22] Mahomed F M and Qu C Z 2000 J. Phys. A: Math. Gen. 33 343
[23] Kara A H, Mahomed F M and Qu C Z 2000 J. Phys. A: Math. Gen. 33 6601
[24] Zhang S L and Qu C Z 2006 Chin. Phys. Lett. 23 527
[25] Jiao X Y, Gao Y and Lou S Y 2009 Sci. China G: Phys. Mech. Astron. 52 1169
[26] Lin W T, Zhang Y and Mo J Q 2013 Chin. Phys. B 22 030205
[27] Lin W T, Lin Y H and Mo J Q 2012 Chin. Phys. B 21 010204
[28] Wu J L and Lou S Y 2012 Chin. Phys. B 21 120204
[29] Hassanabadi H, Yazarloo B H and Lu L L 2012 Chin. Phys. Lett. 29 020303
[30] Li J N and Zhang S L 2011 Chin. Phys. Lett. 28 030201
[31] Ji F Y and Zhang S L 2012 Acta Phys. Sin. 61 080202 (in Chinese)
[32] Zhang S L, Ji F Y and Qu C Z 2012 Commun. Theor. Phys. 58 175
[1] North west cape-induced electron precipitation and theoretical simulation
Zhen-xia Zhang(张振霞), Xin-qiao Li(李新乔), Chen-Yu Wang(王辰宇), Lun-Jin Chen. Chin. Phys. B, 2016, 25(11): 119401.
No Suggested Reading articles found!