Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027802    DOI: 10.1088/1674-1056/23/2/027802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A generalized method of converting CT image to PET linear attenuation coefficient distribution in PET/CT imaging

Wang Lu (王璐)a b, Wu Li-Wei (武丽伟)a b, Wei Le (魏乐)a b, Gao Juan (高娟)a c, Sun Cui-Li (孙翠丽)a c, Chai Pei (柴培)a c, Li Dao-Wu (李道武)a c
a Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing 100049, China
Abstract  The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenuation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV–140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for converting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.
Keywords:  linear attenuation coefficient      PET/CT      attenuation correction      consistency conditions  
Received:  19 April 2013      Revised:  24 May 2013      Accepted manuscript online: 
PACS:  78.70.-g (Interactions of particles and radiation with matter)  
  87.57.uk (Positron emission tomography (PET))  
  87.59.Q-  
  87.57.C- (Image quality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 81101070 and 81101175).
Corresponding Authors:  Chai Pei     E-mail:  chaipei@ihep.ac.cn
About author:  78.70.-g; 87.57.uk; 87.59.Q-; 87.57.C-

Cite this article: 

Wang Lu (王璐), Wu Li-Wei (武丽伟), Wei Le (魏乐), Gao Juan (高娟), Sun Cui-Li (孙翠丽), Chai Pei (柴培), Li Dao-Wu (李道武) A generalized method of converting CT image to PET linear attenuation coefficient distribution in PET/CT imaging 2014 Chin. Phys. B 23 027802

[1] Konik A, Koesters T, Madsen M T and Sunderland J J 2011 IEEE Trans. Nucl. Sci. 58 2308
[2] Yao R, Seidel J, Liow J and Green M V 2005 IEEE Trans. Nucl. Sci. 52 664
[3] Burger C, Goerres G, Schoenes S, Buck A, Lonn A H and Von Schulthess G K 2002 Eur. J. Nucl. Med. 29 922
[4] Bai C, Shao L, Silva A J D and Zhao Z 2003 IEEE Trans. Nucl. Sci. 50 1510
[5] Kinahan P E, Hasegawa B H and Beyer T 2003 Semin Nucl. Med. 33 166
[6] Yu J, Seidel J, Pomper M and Tsui B M W 2007 Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, October 26–November 3, 2007, Honolulu, HI, USA, p. 3747
[7] Prasad R, Ay M R, Ratib O and Zaidi H 2011 IEEE Trans. Nucl. Sci. 58 66
[8] Zaidi H and Hasegawa B 2003 J. Nucl. Med. 44 291
[9] Shirmohammad M, Ay M R, Sarkar S, Ghadiri H and Rahmim A 2008 Proc. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, May 14–17, 2008, Paris, France, p. 644
[10] Natterer F 1986 the Mathematics of Computerized Tomography (New York: Wiley) p. 49
[11] Alessio A M, Kinahan P E and Champley K M 2010 Med. Phys. 37 1191
[12] Bromiley A, Welch A, Chilcott F, Waikar S, McCallum S, Dodd M, Craib S, Schweiger L and Sharp P 2002 IEEE Trans. Nucl. Sci. 48 1371
[13] Wang L, Chai P, Wu L W, Yun M K, Zhou X L, Liu S Q, Zhang Y B, Shan B C and Wei L 2013 Chin. Phys. C 37 018201
[14] Gao F, Yamada R, Watanabe M and Liu H F 2009 Chin. Phys. B 18 3066
[15] Yamada R, Watanabe M, Gao F and Liu H F 2009 Acta Phys. Sin. 58 3584 (in Chinese)
[16] Welch A, Campbell C, Clackdoyle R, Natterer F, Mikecz P, Chillcot F, Dodd M, Hopwood P, Craib S, Gullberg G T and Sharp P 1997 Proc. IEEE Nuclear Science Symposium Conference, November 9–15, 1997, Albuquerque, NM, USA, p. 1697
[17] Yan Y and Zeng G L 2009 Int. J. Imaging Sys. Technol. 19 271
[18] Chantler C T, Olsen K, Dragoset R A, Chang J, Kishore A R, Kotochigova S A and Zucker D S 1995 J. Phys. Chem. Ref. Data 24 71
[19] Ben Bouallegue F, Crouzet J F, Comtat C, Fourcade M, Mohammadi B and Mariano-Goulart D 2007 IEEE Trans. Med. Imaging 26 1001
[20] Hudson H M and Larkin R S 1994 IEEE Trans. Med. Imaging 13 601
[1] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[2] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[3] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[4] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[5] Understanding charge transfer of Li+ and Na+ ions scattered from metal surfaces with high work function
Lin Chen(陈林), Wen-Bin Wu(武文斌), Pin-Yang Liu(刘品阳), Yun-Qing Xiao(肖云青), Guo-Peng Li(李国朋), Yi-Ran Liu(刘亦然), Hao-Yu Jiang(江浩雨), Yan-Ling Guo(郭艳玲), Xi-Meng Chen(陈熙萌). Chin. Phys. B, 2016, 25(8): 083401.
[6] Simulation of positron backscattering and implantation profiles using Geant4 code
Huang Shi-Juan (黄世娟), Pan Zi-Wen (潘子文), Liu Jian-Dang (刘建党), Han Rong-Dian (韩荣典), Ye Bang-Jiao (叶邦角). Chin. Phys. B, 2015, 24(10): 107803.
[7] Effect of helium implantation on SiC and graphite
Guo Hong-Yan (郭洪燕), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Guo Li-Ping (郭立平), Chen Ji-Hong (陈济鸿), Yan Qing-Zhi (燕青芝). Chin. Phys. B, 2015, 24(3): 037803.
[8] Effect of Nano-SiO2 films on electron radiation induced conductivity of polyimide
Yue Long (岳龙), Wu Yi-Yong (吴宜勇), Sun Cheng-Yue (孙承月), Shi Ya-Ping (石亚平), Xiao Jing-Dong (肖景东), He Shi-Yu (何世禹). Chin. Phys. B, 2013, 22(7): 076103.
[9] Optical Tamm state polaritons in a quantum well microcavity with gold layers
Zhang Wei-Li (张伟利) and Rao Yun-Jiang(饶云江) . Chin. Phys. B, 2012, 21(5): 057107.
[10] Terahertz radiation from interaction between an electron beam and a planar surface plasmon structure
Hu Min(胡旻), Zhang Ya-Xin(张雅鑫), Yan Yang(鄢扬), Zhong Ren-Bin(钟任斌), and Liu Sheng-Gang(刘盛纲). Chin. Phys. B, 2009, 18(9): 3877-3882.
[11] Chirality-asymmetry force between $\alpha$-quartz and copper block
Hu Yong-Hong(胡永红), Xu Qing(徐庆), and Liu Zhong-Zhu(刘中柱). Chin. Phys. B, 2009, 18(4): 1367-1372.
[12] Frequency selective surface structure optimized by genetic algorithm
Lu Jun(卢俊), Wang Jian-Bo (汪剑波), and Sun Guan-Cheng(孙贯成). Chin. Phys. B, 2009, 18(4): 1598-1600.
[13] Excitonic optical absorption in semiconductors under intense terahertz radiation
Zhang Tong-Yi (张同意), Zhao Wei (赵 卫). Chin. Phys. B, 2008, 17(11): 4285-4291.
No Suggested Reading articles found!