Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104203    DOI: 10.1088/1674-1056/23/10/104203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Scattering properties of polluted dust in 1.6-μm wavelength

Fan Meng (范萌)a b, Chen Liang-Fu (陈良富)a, Li Shen-Shen (李莘莘)a c, Tao Jin-Hua (陶金花)a, Su Lin (苏林)a, Zou Ming-Min (邹铭敏)a
a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences. Beijing 100101, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
Abstract  Three typical polluted dust particles (i.e., single coated dust, two-sphere/spheroid system, and coated dust with aggregate) including internal and semi-external mixtures are modeled, and their scattering properties at 1.6-μm wavelength are calculated by using the generalized multi-sphere Mie-solution (GMM) method. We investigate the influences of particle size, morphology, and chemical composition on the scattering parameters of polluted dust particles. The analysis results demonstrate that the single scattering albedo of coated dust is much smaller than that of pure dust, especially for the spheroidal black carbon (BC) coated dust. When a dust particle semi-mixes with another aerosol particle to form a two-sphere/spheroid system, its scattering properties are much more sensitive to the size and species of monomers than the monomer shape. If an aggregated BC attaches to the coated dust, the scattering properties of whole particle mainly depend on the host particle (coated dust).
Keywords:  scattering properties      polluted dust      generalized multi-sphere Mie solution method  
Received:  06 October 2013      Revised:  18 February 2014      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.68.-w (Atmospheric and ocean optics)  
  92.60.Mt (Particles and aerosols)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41130528) and the National Basic Research Program of China (Grant No. 2010CB950801).
Corresponding Authors:  Chen Liang-Fu     E-mail:  chenlf@radi.ac.cn
About author:  42.25.Fx; 42.68.-w; 92.60.Mt

Cite this article: 

Fan Meng (范萌), Chen Liang-Fu (陈良富), Li Shen-Shen (李莘莘), Tao Jin-Hua (陶金花), Su Lin (苏林), Zou Ming-Min (邹铭敏) Scattering properties of polluted dust in 1.6-μm wavelength 2014 Chin. Phys. B 23 104203

[1]Chevallier F, Bréon F M and Rayner P J 2007 J. Geophys. Res. 112 D09307
[2]Aben I, Hasekamp O and Hartmann W 2007 J. Quantum Spectrosc. Radiat. Transfer 104 450
[3]Ma J, Chen Y, Wang W, Yan P, Liu H, Yang S, Hu Z and Lelieveld J 2010 J. Geophys. Res. 115 D18204
[4]Li S, Chen L, Xiong X, Tao J, Su L, Han D and Liu Y 2013 IEEE Trans. Geosci. Remote Sens. 51 2528
[5]Pósfai M, Axisa D, Tompa É, Freney E, Bruintjes R and Buseck P R 2013 Atmos. Res. 122 347
[6]Mishchenko M I, Travis L D and Mackowski D W 1996 J. Quantum Spectrosc. Radiat. Transfer 55 535
[7]Yang P and Liou K N 1995 J. Opt. Soc. Am. A 12 162
[8]Purcell E M and Pennypacker C R 1973 Astrophys. J. 186 705
[9]Xu Y L and Gustafson B Å S 2001 J. Quantum Spectrosc. Radiat. Transfer 70 395
[10]Li W J and Shao L Y 2009 Atmos. Chem. Phys. 9 1863
[11]Chou C, Formenti P, Maille M, Ausset P, Helas G, Harrison M and Osborne S 2008 J. Geophys. Res. 113 D00C10
[12]Arimoto R, Kim Y J, Kim Y P, Quinn P K, Bates T S and Anderson T L, et al. 2006 Global. Planet. Change 52 23
[13]Filippov A V, Zurita M and Rosner D E 2000 J. Colloid. Interface Sci. 229 261
[14]Parungo F 1996 Science and Technology Corporation Technical Report for NOAA
[15]Hess M, Koepke P and Schult I 1998 Bull. Am. Meteor. Soc. 79 831
[16]Sorensen C M and Roberts G C 1997 J. Colloid. Interface Sci. 186 447
[1] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[2] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[3] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[4] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[5] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[8] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[9] Reflectionless spatial beam benders with arbitrary bending angle by introducing optic-null medium into transformation optics
Fei Sun(孙非), Yi-Chao Liu(刘一超), Yi-Biao Yang(杨毅彪), Hong-Ming Fei(费宏明), Zhi-Hui Chen(陈智辉), and Sai-Ling He(何赛灵). Chin. Phys. B, 2021, 30(3): 034101.
[10] Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam
Yan Li(李艳), Ming Gao(高明)†, Hong Lv(吕宏), Li-Guo Wang(王利国), and Shen-He Ren(任神河). Chin. Phys. B, 2020, 29(10): 104201.
[11] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[12] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[13] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[14] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[15] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
No Suggested Reading articles found!