ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space |
Xinpeng Chen(陈鑫鹏)1, Chuangjie Xu(许创杰)2, Qian Yang(杨芊)1, Zhiming Luo(罗智明)1, Xixian Li(李希贤)1, Dongmei Deng(邓冬梅)1 |
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China; 2 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract We investigate a family of radially polarized Pearcey-Gauss vortex beams (RPPGVBs), obtain the general propagation expressions of an RPPGVB, and study the intensity distribution, phase pattern, spin currents as well as the orbital currents when the RPPGVB propagates in free space. The focal plane and the intensity of the focal point can be adjusted by changing the position of the vortex and the scaling factors. We also investigate how the waist size influences the propagation properties.
|
Received: 03 January 2020
Revised: 09 February 2020
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108) and the National Training Program of Innovation and Entrepreneurship for Undergraduates, China. |
Corresponding Authors:
Dongmei Deng
E-mail: dmdeng@263.net
|
Cite this article:
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅) Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space 2020 Chin. Phys. B 29 064202
|
[1] |
Gahagan K T and Swartzlander G A 1996 Opt. Lett. 21 827
|
[2] |
Gbur G and Tyson R K 2008 J. Opt. Soc. Am. A 25 225
|
[3] |
Ng J, Lin Z and Chan C T 2010 Phys. Rev. Lett. 104 103601
|
[4] |
Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T and Heckenberg N R 1997 Phys. Rev. A 56 4064
|
[5] |
Carpentier A V, Michinel H, Salgueiro J R and Olivieri D 2008 Am. J. Phys. 76 916
|
[6] |
Yi X N, Ling X H, Zhang Z Y, Li Y, Zhou X X, Liu Y C, Chen S Z, Luo H L and Wen S C 2014 Opt. Express 22 17207
|
[7] |
Masajada J and Dubik B 2001 Opt. Commun. 198 21
|
[8] |
Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C and Zhao J L 2016 Opt. Lett. 41 2205
|
[9] |
Lee W M, Yuan X C and Cheong W C 2004 Opt. Lett. 29 1796
|
[10] |
Vaity P and Rusch L 2015 Opt. Lett. 40 597
|
[11] |
Simpson N B, Dholakia K, Allen L and Padgett M J 1997 Opt. Lett. 22 52
|
[12] |
Paterson C 2005 Phys. Rev. Lett. 94 153901
|
[13] |
Grier D G 2003 Nature 424 810
|
[14] |
Chen Y H, Wang F, Zhao C L and Cai Y J 2014 Opt. Express 22 5826
|
[15] |
Grosjean T, Courjon D and Spajer M 2002 Opt. Commun. 203 1
|
[16] |
Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
|
[17] |
Niziev V G and Nesterov A V 1999 J. Phys. D: Appl. Phys. 32 1455
|
[18] |
Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2007 Opt. Lett. 32 1468
|
[19] |
Lerman G M and Levy U 2008 Opt. Lett. 33 2782
|
[20] |
Yonezawa K, Kozawa Y and Sato S 2006 Opt. Lett. 31 2151
|
[21] |
Berry M V and Balazs N L 1979 Am. J. Phys. 47 264
|
[22] |
Lin Y, Seka W, Eberly J H, Huang H and Brown D L 1992 Appl. Opt. 31 2708
|
[23] |
Lin J, Dellinger J, Genevet P, Cluzel B, de F and Capasso F 2012 Phys. Rev. Lett. 109 093904
|
[24] |
Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K and Dennis M R 2012 Opt. Express 20 18955
|
[25] |
Deng D M, Chen C D, Zhao X, Chen B, Peng X and Zheng Y S 2014 Opt. Lett. 39 2703
|
[26] |
Ren Z J, Fan C J, Shi Y L and Chen B 2016 J. Opt. Soc. Am. A 33 1523
|
[27] |
Cheng K, Lu G and Zhong X 2017 Appl. Phys. B 123 60
|
[28] |
Pearcey T 1946 London Edinburgh Dublin Philos. Mag. J. Sci. 37 311
|
[29] |
Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163
|
[30] |
Xu C J, Lin L D, Huang Z Z, Chen Y Z, Yang X B, Liu H Z and Deng D M 2018 Laser Phys. 28 115001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|