Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060302    DOI: 10.1088/1674-1056/22/6/060302
GENERAL Prev   Next  

New decomposition of the Fresnel operator corresponding to optical transformation in ABCD-systems

Du Jian-Ming (杜建明)a, Fan Hong-Yi (范洪义)b
a Department of Physics and Electronic Information, Huainan Normal University, Huainan 232001, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property, we obtain new decomposition of the Fresnel operator as the product of quadratic phase operator, squeezing operator, and fractional Fourier transformation operator, which in turn sheds light on the matrix optics design of ABCD-systems. The new decomposition for the two-mode Fresnel operator is also obtained by the use of entangled state representation.
Keywords:  Fresnel operator      integration within an ordered product technique      optical transformation  
Received:  15 August 2012      Revised:  21 November 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the University Natural Science Foundation of Anhui Province, China (Grant No. KJ2011Z339) and the National Natural Science Foundation of China (Grant No. 10874174).
Corresponding Authors:  Du Jian-Ming     E-mail:  jmdu@hnnu.edu.cn

Cite this article: 

Du Jian-Ming (杜建明), Fan Hong-Yi (范洪义) New decomposition of the Fresnel operator corresponding to optical transformation in ABCD-systems 2013 Chin. Phys. B 22 060302

[1] Fan H Y and Hu L Y 2009 Opt. Commun. 282 3734
[2] Dirac P A M 1935 The Principles of Quantum Mechanics 2nd edn. (Oxford: Clarendon Press)
[3] Fan H Y 2003 J. Opt. B: Quantum & Semiclass. Opt. 5 R147
[4] Glauber R J 1963 Phys. Rev. 130 2529
[5] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[6] Wünsche A 1999 J. Opt. B: Quantum & Semiclass. Opt. 1 R11
[7] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optic (New York: W. A. Benjamin)
[8] Xie C M and Fan H Y 2011 Chin. Phys. B 20 060303
[9] Xie C M and Fan H Y 2010 Chin. Phys. B 19 064207
[10] Fan H Y and Lu H L 2005 Phys. Lett. A 334 132
[11] Xie C M and Fan H Y 2012 Chin. Phys. B 21 044203
[12] Xie C M and Fan H Y 2012 Chin. Phys. B 21 010302
[13] Fan H Y and Ye X 1995 Phys. Rev. A 51 3343
[14] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[15] Jinag N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math. Theor. 44 195302
[1] Quantum mechanical version of classical Liouville theorem
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030501.
[2] New approach to Q-P (P-Q) ordering of quantum mechanical operators and its applications
Hu Li-Yun (胡利云), Zhang Hao-Liang (张浩亮), Jia Fang (贾芳), Tao Xiang-Yang (陶向阳). Chin. Phys. B, 2013, 22(12): 120301.
[3] The two-mode quantum Fresnel operator and the multiplication rule of 2D Collins diffraction formula
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(4): 044203.
[4] New theorem relating two-mode entangled tomography to two-mode Fresnel operator
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(1): 010302.
[5] Four-mode coherent-entangled state and its application
Li Hong-Qi(李洪奇), Ren Ting-Qi(任廷琦), Zhang Yun-Hai(张运海), and Xu Xing-Lei(徐兴磊) . Chin. Phys. B, 2012, 21(1): 010305.
[6] A new theorem relating quantum tomogram to the Fresnel operator
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2011, 20(6): 060303.
[7] A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation
Xie Chuan-Mei(谢传梅), Fan Hong-Yi(范洪义), and Wan Shao-Long(完绍龙). Chin. Phys. B, 2010, 19(6): 064207.
[8] Optical scaled Fresnel--Fourier transform obtained via intermediate coordinate-- momentum representation
Li Chi-Sheng(李迟生) and Luo Han-Wen(罗汉文). Chin. Phys. B, 2010, 19(1): 010308.
[9] The N-mode squeezed state with enhanced squeezing
Xu Xue-Xiang(徐学翔),Hu Li-Yun(胡利云), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2009, 18(12): 5139-5143.
[10] Quantum optical ABCD theorem in two-mode case
Fan Hong-Yi(范洪义) and Hu Li-Yun(胡利云). Chin. Phys. B, 2008, 17(5): 1640-1644.
No Suggested Reading articles found!