Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044203    DOI: 10.1088/1674-1056/21/4/044203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The two-mode quantum Fresnel operator and the multiplication rule of 2D Collins diffraction formula

Xie Chuan-Mei(谢传梅)a)b)† and Fan Hong-Yi(范洪义)b)
a. College of Physics & Material Science, Anhui University, Hefei 230039, China;
b. Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By using the two-mode Fresnel operator we derive a multiplication rule of two-dimensional (2D) Collins diffraction formula, the inverse of 2D Collins diffraction integration can also be conveniently derived in this way in the context of quantum optics theory.
Keywords:  2D Collins diffraction formula      two-mode Fresnel operator  
Received:  27 September 2011      Revised:  10 November 2011      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Doctoral Scientific Research Startup Fund of Anhui University, China (Grant No. 33190059), the National Natural Science Foundation of China (Grant No. 10874174), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113401120004), and the Open Funds from National Laboratory for Infrared Physics, Chinese Academy of Sciences (Grant No. 201117).
Corresponding Authors:  Xie Chuan-Mei,xiecmei@mail.ustc.edu.cn     E-mail:  xiecmei@mail.ustc.edu.cn

Cite this article: 

Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) The two-mode quantum Fresnel operator and the multiplication rule of 2D Collins diffraction formula 2012 Chin. Phys. B 21 044203

[1] Gerrard A and Burch J M 1975 Introduction to Matrix Method in Optics (London: Wiley)
[2] Collins S A 1970 J. Opt. Soc. Am. 60 1168
[3] Fan H Y and Lu H L 2005 Phys. Lett. A 334 132
[4] Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640
[5] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optic (New York: W.A. Benjamin)
[6] Glauber J R 1963 Phys. Rev. 130 2529
[7] Wüsche A 1999 J. Opt. B: Quantum & Semiclass. Opt. 1 11
[8] Xie C M, Fan H Y and Wan S L 2010 Chin. Phys. B 19 064207
[9] Liu T K, Shan C J, Liu J B and Fan H Y 2010 Chin. Phys. B 19 090307
[10] Xu X L, Li H Q and Fan H Y 2009 Chin. Phys. B 18 918
[11] Fan H Y and Ye X 1995 Phys. Rev. A 51 3343
[12] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[13] Jinag N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math. Theor. 44 195302
[14] Fan H Y, Xu X X, Yuan H C, Wang S, Wang Z, Xu P and Jiang N Q 2011 Chin. Phys. B 20 070301
[1] New theorem relating two-mode entangled tomography to two-mode Fresnel operator
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(1): 010302.
No Suggested Reading articles found!