Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060301    DOI: 10.1088/1674-1056/22/6/060301
GENERAL Prev   Next  

New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation

Yuan Hong-Chun (袁洪春)a, Li Heng-Mei (李恒梅)b, Xu Xue-Fen (许雪芬)c
a College of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002, China;
b School of Science, Changzhou Institute of Technology, Changzhou 213002, China;
c School of Mathematics and Physics, Jiangsu Teachers University of Technology, Changzhou 213001, China
Abstract  By virtue of the entangled state representation we concisely derive some new operator identities regarding to two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered product (IWOP) of operators we further derive new generating function formulas of TVHP. They are useful in quantum optical theoretical calculations. It is seen from this work that by combining the IWOP technique and quantum mechanical representations one can derive some new integration formulas even without really performing the integration.
Keywords:  two-variable Hermite polynomial      entangled state representation      operator identities  
Received:  14 October 2012      Revised:  18 December 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174114), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJD140001), and the Research Foundation of Changzhou Institute of Technology of China (Grant No. YN1106).
Corresponding Authors:  Yuan Hong-Chun     E-mail:  yuanhch@126.com, yuanhc@czu.cn

Cite this article: 

Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬) New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation 2013 Chin. Phys. B 22 060301

[1] Erdélyi A 1953 Higher Transcendental Functions (New York: McGraw-Hill)
[2] Abramowitz M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
[3] Rainville E D 1960 Special Functions (New York: MacMillan Company)
[4] Fan H Y and Chen J H 2002 Phys. Lett. A 303 311
[5] Wünsche A 1998 J. Phys. A: Math. Gen. 31 8267
[6] Fan H Y and Lu H L 2003 Opt. Lett. 28 680
[7] Fan H Y and Xu X F 2004 Opt. Lett. 29 1048
[8] Hu L Y and Fan H Y 2008 J. Mod. Opt. 55 2011
[9] Hu L Y and Fan H Y 2008 Commun. Theor. Phys. 50 965
[10] Xu Y J, Yuan H C and Liu Q Y 2010 Int. J. Theor. Phys. 49 1106
[11] Tan G B, Xu L J and Ma S J 2012 Chin. Phys. B 21 044210
[12] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[13] Fan H Y, Hu L Y and Yuan H C 2010 Chin. Phys. B 19 060305
[14] Hu L Y, Wang Z S, Kwek L C and Fan H Y 2011 Chin. Phys. B 20 084203
[15] Hu L Y, Wang S and Zhang Z M 2012 Chin. Phys. B 21 064207
[16] Li X C, Xie C M and Fan H Y 2012 Chin. Phys. B 21 080304
[17] Wünsche, A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
[18] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[19] Jiang N Q and Zhang Y Z 2006 Phys. Rev. A 74 012306
[20] Jiang N Q, Jing B Q, Zhang Y and Cai G C 2008 Eurphys Lett. 84 14002
[21] Lu H L and Fan H Y 2007 Commun. Theor. Phys. 47 1024
[22] Yuan H C, Fan H Y and Hu L Y 2011 Chin. Phys. B 20 114204
[23] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math. Theor. 44 195302
[24] Yuan H C, Xu X X and Fan H Y 2010 Sci. China G: Phys. Mech. Astron. 53 1793
[25] Fan H Y 1990 J. Phys. A: Math. Gen. 23 1833
[26] Hu L Y, Xu X X and Fan H Y 2010 J. Opt. Soc. Am. B 27 286
[27] Xu X X, Hu L Y and Fan H Y 2009 Mod. Phys. Lett. A 24 2623
[28] Li H M and Yuan H C 2010 Int. J. Theor. Phys. 49 2121
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new kind of special function and its application
Fan Hong-Yi (范洪义), Wan Zhi-Long (万志龙), Wu Ze (吴泽), Zhang Peng-Fei (张鹏飞). Chin. Phys. B, 2015, 24(10): 100302.
[5] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[6] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[7] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[8] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui (展德会), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(12): 120301.
[9] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[10] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[13] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[14] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[15] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
No Suggested Reading articles found!