Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120301    DOI: 10.1088/1674-1056/22/12/120301
GENERAL Prev   Next  

New approach to Q-P (P-Q) ordering of quantum mechanical operators and its applications

Hu Li-Yun (胡利云), Zhang Hao-Liang (张浩亮), Jia Fang (贾芳), Tao Xiang-Yang (陶向阳)
Center for Quantum Science and Technology, College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate and momentum operators, respectively. Some operator identities are derived concisely. As for its applications, the single (two-) mode squeezed operators and Fresnel operator are examined. It is shown that the classical correspondence of Fresnel operator’s Q-P (P-Q) ordering is just the integration kernel of Fresnel transformation. In addition, a new photo-counting formula is constructed by the Q-P ordering of operators.
Keywords:  Q-P (P-Q) ordering      Fresnel operator      photo-counting  
Received:  03 April 2013      Revised:  08 May 2013      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11264018), the Natural Science Foundation of Jiangxi Province of China (Grant No. 20132BAB212006), and the Fund from the Key Laboratory of Optoelectronics and Telecommunication of Jiangxi Province, China.
Corresponding Authors:  Hu Li-Yun     E-mail:  hlyun@jxnu.edu.cn

Cite this article: 

Hu Li-Yun (胡利云), Zhang Hao-Liang (张浩亮), Jia Fang (贾芳), Tao Xiang-Yang (陶向阳) New approach to Q-P (P-Q) ordering of quantum mechanical operators and its applications 2013 Chin. Phys. B 22 120301

[1] Dirac P A M 1958 The Principle of Quantum Mechanics, 4th edn. (Oxford: Oxford University Press)
[2] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[3] Fan H Y 2008 Ann. Phys. 323 500
[4] Fan H Y 2010 Chin. Phys. B 19 040305
[5] Lee H W 1995 Phys. Rep. 259 147
[6] Balazs N L and Jenning B K 1984 Phys. Rep. 104 347
[7] Wang J S, Fan H Y and Meng X G 2012 Chin. Phys. B 21 064204
[8] Fan H Y 2012 Sci. China: Phys. Mech. Astron. 55 762
[9] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley)
[10] Puri R R 2001 Mathematical Methods of Quantum Optics (Berline: Springer-Verlag), Appendix A
[11] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics: Progress of Dirac’s Symbolic Method (Shanghai: Shanghai Scientific & Technical Publishers)
[12] Fan H Y and Hu L Y 2012 Front. Phys. 7 261
[13] Loudon R 1983 The Quantum Theory of Light (Oxford: Oxford University Press)
[14] Orszag M 2000 Quantum Optics (Berlin: Springer)
[15] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[16] Hu L Y, Wang Z S, Kwek L C and Fan H Y 2011 Chin. Phys. B 20 084203
[17] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev. A 82 043842
[1] New decomposition of the Fresnel operator corresponding to optical transformation in ABCD-systems
Du Jian-Ming (杜建明), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(6): 060302.
[2] Quantum mechanical version of classical Liouville theorem
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030501.
[3] The two-mode quantum Fresnel operator and the multiplication rule of 2D Collins diffraction formula
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(4): 044203.
[4] New theorem relating two-mode entangled tomography to two-mode Fresnel operator
Xie Chuan-Mei(谢传梅) and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(1): 010302.
[5] Four-mode coherent-entangled state and its application
Li Hong-Qi(李洪奇), Ren Ting-Qi(任廷琦), Zhang Yun-Hai(张运海), and Xu Xing-Lei(徐兴磊) . Chin. Phys. B, 2012, 21(1): 010305.
[6] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
[7] A new theorem relating quantum tomogram to the Fresnel operator
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2011, 20(6): 060303.
[8] A generalized Collins formula derived by virtue of the displacement-squeezing related squeezed coherent state representation
Xie Chuan-Mei(谢传梅), Fan Hong-Yi(范洪义), and Wan Shao-Long(完绍龙). Chin. Phys. B, 2010, 19(6): 064207.
[9] Optical scaled Fresnel--Fourier transform obtained via intermediate coordinate-- momentum representation
Li Chi-Sheng(李迟生) and Luo Han-Wen(罗汉文). Chin. Phys. B, 2010, 19(1): 010308.
[10] Quantum optical ABCD theorem in two-mode case
Fan Hong-Yi(范洪义) and Hu Li-Yun(胡利云). Chin. Phys. B, 2008, 17(5): 1640-1644.
No Suggested Reading articles found!