Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060210    DOI: 10.1088/1674-1056/22/6/060210
GENERAL Prev   Next  

An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)

Shi Ting-Yu (时婷玉)a, Cheng Rong-Jun (程荣军)b, Ge Hong-Xia (葛红霞)a
a Faculty of Science, Ningbo University, Ningbo 315211, China;
b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Abstract  A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method.
Keywords:  element-free Galerkin (EFG) method      meshless method      generalized Fisher equations (GFE)  
Received:  07 November 2012      Revised:  15 December 2012      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072117), the Natural Science Foundation of Ningbo City (Grant Nos. 2012A610038 and 2012A610152), the Scientific Research Fund of Education Department of Zhejiang Province, China (Grant No. Z201119278), and K.C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Ge Hong-Xia     E-mail:  gehongxia@nbu.edu.cn

Cite this article: 

Shi Ting-Yu (时婷玉), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞) An element-free Galerkin (EFG) method for generalized Fisher equations (GFE) 2013 Chin. Phys. B 22 060210

[1] Fisher R A 1930 The General Theory of Natural Selection (Oxford: Oxford University Press) pp. 22-47
[2] Vlad M O, Szedlacsek S E, Pourmand N, Cavalli-Sforza L L, Oefner P and Ross J 2005 Proc. Natl. Acad. Sci. USA 102 9848
[3] Ross J 2010 Proc. Natl. Acad. Sci. USA 107 12777
[4] Gazdag J and Canosa J 1974 J. Appl. Probab. 11 445
[5] Qiu Y and Sloan D M 1998 J. Comput. Phys. 146 726
[6] Wazwaz A M and Gorguis A 2004 Appl. Math. Comput. 154 609
[7] Tang S and Weber R O 1991 J. Austr. Math. Soc. Sci. B 33 27
[8] Al-Khaled K 2001 J. Comput. Appl. Math. 137 245
[9] Mickens R E 1994 Numer. Meth. Part. Differ. Eqns. 10 581
[10] El-Azab M S 2007 Appl. Math. Comput. 186 579
[11] Mittal R C and Ceeta A 2010 Int. J. Comput. Math. 87 3039
[12] Sahin A, Dag I and Saka B 2008 Kybernetes 37 326
[13] Macías-Díaz J E and Puri A 2012 J. Comput. Appl. Math. 218 5829
[14] Zhang R P and Zhang L W 2012 Chin. Phys. B 21 090206
[15] Alfaro M and Coville J 2012 Appl. Math. Lett. 25 2095
[16] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Methods Engng. 37 229
[17] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[18] Cheng R J and Ge H X 2009 Chin.Phys. B 18 4059
[19] Du C 2000 Comput. Methods Appl. Mesh. Engng. 182 89
[20] Kryl P and Belytschko T 1995 Comput. Mech. 17 26
[21] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[22] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys B. 21 090203
[23] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys B 21 090204
[24] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys B 21 090205
[25] Cheng Y M and Peng M J 2005 Sci. China G: Phys. Mech. & Astron. 35 435 in Chinese
[26] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[27] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[28] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[29] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[30] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[31] Ge H X, Liu Y Q and Cheng R J 2010 Chin. Phys. B 21 010206
[32] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[33] Xiao Y M and Wu Y J 2011 J. Lanzhou University 47 2 (in Chinese)
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[12] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[14] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[15] A new complex variable meshless method for advection–diffusion problems
Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(3): 030208.
No Suggested Reading articles found!