Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030208    DOI: 10.1088/1674-1056/22/3/030208
GENERAL Prev   Next  

A new complex variable meshless method for advection–diffusion problems

Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民)
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, an improved complex variable meshless method (ICVMM) for two-dimensional advection–diffusion problems is developed. The equivalent functional of two-dimensional advection–diffusion problems is formed, the variation method is used to obtain the equation system, and the penalty method is employed to impose the essential boundary conditions. The difference method for two-point boundary value problems is used to obtain the discrete equations. Then the corresponding formulas of the ICVMM for advection–diffusion problems are presented. Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper. It is shown that the ICVMM is very effective for advection–diffusion problems, and has good convergent character, accuracy, and computational efficiency.
Keywords:  meshless method      improved complex variable moving least-square approximation      improved complex variable meshless method      advection–diffusion problem  
Received:  13 August 2012      Revised:  27 August 2012      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  66.10.C- (Diffusion and thermal diffusion)  
  82.56.Lz (Diffusion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171208), the Shanghai Leading Academic Discipline Project, China (Grant No. S30106), and the Innovation Fund for Graduate Student of Shanghai University, China (Grant No. SHUCX120125).
Corresponding Authors:  Cheng Yu-Min     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民) A new complex variable meshless method for advection–diffusion problems 2013 Chin. Phys. B 22 030208

[1] Franca LP, Hauke G and Masud A 2006 Comput. Method Appl. M. 195 1560
[2] Turner D Z, Nakshatrala K B and Hjelmstad K D 2011 Int. J. Numer. Meth. Fl. 66 64
[3] Volker J and Petr K 2007 Comput. Method Appl. M. 196 2197
[4] Volker J and Julia N 2012 J. Comput. Phys. 231 1570
[5] Knopp T, Lube G and Rapin G 2002 Comput. Method Appl. M. 191 2997
[6] Boztosun I and Charafi A 2002 Eng. Anal. Bound Elem. 26 889
[7] Noye B J and Tan H H 1989 Int. J. Numer. Meth. Fl. 9 75
[8] Ikeuchi M and Onishi K 1983 Appl. Math. Model. 7 115
[9] Zerroukat M, Power H and Chen C S 1998 Int. J. Numer. Meth. Eng. 42 1263
[10] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[11] Zhang Z, Zhao P and Liew K M 2009 Eng. Anal. Bound. Elem. 33 547
[12] Li S C, Cheng Y M and Li S C 2006 Acta Phys. Sin. 55 4760 (in Chinese)
[13] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[14] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[15] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[16] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[17] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[18] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[19] Zhuang P, Gu Y T and Liu F 2011 Int. J. Numer. Meth. Eng. 88 1346
[20] Wang J F, Bai F N and Cheng Y M 2011 Chin. Phys. B 20 030206
[21] Cheng Y M, Peng M J and Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese)
[22] Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P 1996 Comput. Methods Appl. Mech. Eng. 139 3
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋). Chin. Phys. B, 2013, 22(8): 080203.
[13] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[14] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[15] An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
Shi Ting-Yu (时婷玉), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(6): 060210.
No Suggested Reading articles found!