Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070205    DOI: 10.1088/1674-1056/21/7/070205
GENERAL Prev   Next  

An extension of the modified Sawada–Kotera equation and conservation laws

He Guo-Liang(何国亮)a)b)† and Geng Xian-Guo(耿献国)a)
a Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China;
b Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract  Based on the modified Sawada--Kotera equation, we introduce a 3?3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawada--Kotera equation, by which a Lax pair of the modified Sawada--Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawada--Kotera equation, the Kaup--Kupershmidt equation, and the modified Sawada--Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada--Kotera equation are constructed with the aid of their Lax pairs.
Keywords:  spectral problem      explicit solutions      conservation laws  
Received:  07 November 2011      Revised:  17 February 2012      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171312) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 200804590008).
Corresponding Authors:  Geng Xian-Guo     E-mail:  glhemath@163.com

Cite this article: 

He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) An extension of the modified Sawada–Kotera equation and conservation laws 2012 Chin. Phys. B 21 070205

[1] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[2] Caudrey P J, Dodd R K and Gibbon J D 1976 Proc. Roy. Soc. London Ser. A 351 407
[3] Dodd R K and Gibbon J D 1978 Proc. Roy. Soc. London Ser. A 358 287
[4] Kaup D J 1980 Stud. Appl. Math. 62 189
[5] Kupershmidt B A 1984 Phys. Lett. A 102 213
[6] Parker A 2001 Inv. Prob. 17 885
[7] Konno K 1992 J. Phys. Soc. Jpn. 61 51
[8] Musette M 1998 J. Math. Phys. 39 5617
[9] Musette M and Verhoeven C 2000 Phys. D 144 211
[10] Dye J M and Parker A 2001 J. Math. Phys. 42 2567
[11] Dye J M and Parker A 2001 J. Math. Phys. 43 4921
[12] Popowicz Z 2004 J. Phys. A: Math. Gen. 37 L511
[13] Allan P F and Gibbons J 1980 Phys. Lett. A 76 325
[14] Ouyang S G, Guo Q, Wu L J and Lan S 2007 Chin. Phys. 16 2331
[15] Wu Y Q 2010 Chin. Phys. B 19 040304
[16] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[17] Taogetusang 2011 Acta Phys. Sin. 60 070203 (in Chinese)
[18] Taogetusang 2011 Acta Phys. Sin. 60 070204 (in Chinese)
[19] Huang D J, Zhou S G and Yang Q M 2011 Chin. Phys. B 20 070202
[20] Feng Q H, Meng F W and Zhang Y M 2011 Chin. Phys. B 20 120202
[21] Yin J L, Fan Y Q, Zhang J and Tian L X 2011 Acta Phys. Sin. 60 080201 (in Chinese)
[22] Su J, Xu W, Duan D H and Xu G J 2011 Acta Phys. Sin. 60 110203 (in Chinese)
[23] Liu Y and Liu W Q 2011 Acta Phys. Sin. 60 120202 (in Chinese)
[24] Chen J B and Geng X G 2006 Chin. Phys. 15 1407
[25] Geng X G and Xue B 2011 Adv. Math. 226 827
[26] Geng X G 1989 Appl. Math. J. Chinese Univ. 4 494
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[3] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[4] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[5] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[6] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[7] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[8] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[9] Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation
Xin Xiang-Peng (辛祥鹏), Miao Qian (苗倩), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(1): 010203.
[10] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[11] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[12] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[13] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[14] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[15] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
No Suggested Reading articles found!