Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054216    DOI: 10.1088/1674-1056/21/5/054216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mitigation of laser damage growth in fused silica by using a non-evaporative technique

Jiang Yong(蒋勇)a)b), Liu Chun-Ming(刘春明)a)†, Luo Cheng-Si(罗成思)a), Yuan Xiao-Dong(袁晓东)b), Xiang Xia(向霞)a), Wang Hai-Jun(王海军)b), He Shao-Bo(贺少勃)b), Lü Hai-Bin(吕海兵)b), Ren Wei (任玮)b), Zheng Wan-Guo(郑万国)b), and Zu Xiao-Tao(祖小涛)a)‡
a. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm. The influence of the pulse frequency of a CO2 laser on the mitigation effect is studied. It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz. Furthermore, the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency, leading to less degradation of the wave-front quality of the conditioned sample. The energy density of the CO2 laser beam is introduced for selecting the mitigation parameters. The damage sites can be successfully mitigated by increasing the energy density in a ramped way. Finally, the laser-induced damage threshold (LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot (0.23 mm2) and a large spot (3.14 mm2), separately. It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.
Keywords:  fused silica      CO2 laser      non-evaporative technique      energy density  
Received:  28 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.70.Ce (Glasses, quartz)  
  61.80.-x (Physical radiation effects, radiation damage)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  79.20.Eb (Laser ablation)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8040508), Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008), the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2011J043), and the Sichuan Provincial Young Scientists Foundation, China (Grant No. 2010JQ0006).

Cite this article: 

Jiang Yong(蒋勇), Liu Chun-Ming(刘春明), Luo Cheng-Si(罗成思), Yuan Xiao-Dong(袁晓东), Xiang Xia(向霞), Wang Hai-Jun(王海军), He Shao-Bo(贺少勃), LüHai-Bin(吕海兵), Ren Wei (任玮), Zheng Wan-Guo(郑万国), and Zu Xiao-Tao(祖小涛) Mitigation of laser damage growth in fused silica by using a non-evaporative technique 2012 Chin. Phys. B 21 054216

[1] During A, Bouchut P, Coutard J G, Leymarie C and Bercegol H 2007 Proc. SPIE 6403 640323
[2] Huang W Q, Han W, Wang F, Xiang Y, Li F Q, Feng B, Jing F, Wei X F, Zheng W G and Zhang X M 2009 Chin. Phys. Lett. 26 017901
[3] Yang S T, Matthews M J, Elhadj S, Cooke D, Guss G M, Draggoo V G and Wegner P J 2010 Proc. SPIE 7842 784219
[4] Liu H J, Zhou X D, Huang J, Wang F R, Jiang X D, Huang J, Wu W D and Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese)
[5] Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D and Zheng W G 2010 Acta Phys. Sin. 59 5122 (in Chinese)
[6] Guss G, Bass I, Draggoo V, Hackel R, Payne S, Lancaster M and Mak P 2006 Proc. SPIE 6403 64030M
[7] Mendez E, Nowak K M, Baker H J, Villarreal F J and Hall D R 2006 Appl. Opt. 45 5358
[8] Markillie G A J, Baker H J, Villarreal F J and Hall D R 2002 Appl. Opt. 41 5660
[9] Palmier S, Gallais L, Commandré M, Cormont P, Courchinoux R, Lamaignére L, Rullier J L and Legros P 2009 Appl. Sur. Sci. 255 5532
[10] Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J and Nostrand M C 2010 Proc. SPIE 7842 784223
[11] Mendez E, Baker H J, Nowak K M, Villarreal F and Hall D R 2005 Proc. SPIE 5647 165
[12] Jiang Y, Xiang X, Liu Ch M, Luo Ch S, Wang H J, Yuan X D, He Sh B, Ren W, Lü H B, Zheng W G and Zu X T 2011 Chin. Phys. B to be published
[13] Matthews M J, Bass I L, Guss G M, Widmayer C C and Ravizza F L 2007 Proc. SPIE 6720 67200A
[1] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[2] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[3] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[4] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[5] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[6] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[7] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[8] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[9] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[10] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[11] Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria
Xiang He(何祥), Gang Wang(王刚), Heng Zhao(赵恒), Ping Ma(马平). Chin. Phys. B, 2016, 25(4): 048104.
[12] Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface
Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向). Chin. Phys. B, 2016, 25(10): 108104.
[13] New developments in the multiscale hybrid energy density computational method
Min Sun(孙敏), Shanying Wang(王山鹰), Dianwu Wang(王殿武), Chongyu Wang(王崇愚). Chin. Phys. B, 2016, 25(1): 013105.
[14] Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica
Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2016, 25(1): 014210.
[15] ATR-FTIR spectroscopic studies on density changes of fused silica induced by localized CO2 laser treatment
Zhang Chuan-Chao (张传超), Zhang Li-Juan (张丽娟), Liao Wei (廖威), Yan Zhong-Hua (晏中华), Chen Jing (陈静), Jiang Yi-Lan (蒋一岚), Wang Hai-Jun (王海军), Luan Xiao-Yu (栾晓雨), Ye Ya-Yun (叶亚云), Zheng Wan-Guo (郑万国), Yuan Xiao-Dong (袁晓东). Chin. Phys. B, 2015, 24(2): 024220.
No Suggested Reading articles found!