Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037401    DOI: 10.1088/1674-1056/21/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Single-particle distribution function of a quantum dot system at finite temperature

Wen Rui(文瑞), Zhang De-Ping(张德平), and Tian Guang-Shan(田光善)
School of Physics, Peking University, Beijing 100871, China
Abstract  In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2006)), we take a different approach, which does not exploit the explicit expression of the Gibbs distribution function. Instead, we only assume that the statistical distribution function of the quantum dot system is thermodynamically stable. As a result, we are able to show clearly that the electronic structure in the quantum dot system is completely determined by its thermodynamic stability. Furthermore, the weaker requirements on the statistical distribution function also make it possible to apply the same method to the quantum dot systems in non-equilibrium states.
Keywords:  quantum dot systems      electron distribution function      rigorous results  
Received:  10 August 2011      Revised:  29 September 2011      Accepted manuscript online: 
PACS:  74.78.Na (Mesoscopic and nanoscale systems)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Science Foundation of China (Grant Nos. 10874003 and 11074004) and the National Basic Research Program of China (Grant No. 2009CB939901).
Corresponding Authors:  Tian Guang-Shan,tiangs@pku.edu.cn     E-mail:  tiangs@pku.edu.cn

Cite this article: 

Wen Rui(文瑞), Zhang De-Ping(张德平), and Tian Guang-Shan(田光善) Single-particle distribution function of a quantum dot system at finite temperature 2012 Chin. Phys. B 21 037401

[1] Ruelle D 1969 Statistical Mechanics (Massachusetts: Benjamin Inc.) p. 33
[2] Amit D J 1984 Field Theory, the Renormalization Group, and Critical Phenomena (Singapore: World Scientific)
[3] Dyson F J and Lenard A 1967 J. Math. Phys. 8 423
[4] Dyson F J and Lenard A 1968 J. Math. Phys. 9 1538
[5] Lieb E H and Thirring W 1975 Phys. Rev. Lett. 35 687
[6] Lieb E H and Seiringer R 2010 The Stability of Matter in Quantum Mechanics (Cambridge: Cambridge University Press)
[7] Yong H C, Yang K H and Tian G S 2006 Phys. Rev. B 74 195414
[8] Israel R 1979 Convexity in the Theory of Lattice Gases (New Jersey: Princeton University Press)
[9] Haug H and Jauho A P 1996 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer-Verlag)
[10] Keldysh L V 1965 JETP Lett. 20 1018
[11] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 1569
[12] Cronenwett S M, Oosterkamp T H and Kouwenhoven L P Science 281 540
[13] Meir Y and Wingreen N S 1994 Phys. Rev. B 49 11040
[14] Aguado R and Langreth D C 2003 Phys. Rev. B 67 245307
[15] Hu Z M, Yang K H and Tian G S 2005 Commun. Theor. Phys. 44 563
[16] Ng T G 1996 Phys. Rev. Lett. 76 487
[17] Yong H C, Yang K H and Tian G S 2007 Commun. Theor. Phys. 48 1107
[18] Hershfield S 1993 Phys. Rev. Lett. 70 2134
[19] Fujii T 2007 J. Phys. Soc. Jpn. 76 044709
[20] Hu Z M, Yang K H and Tian G S 2004 Phys. Lett. A 326 462
[21] Ekeland I and Temam R 1976 Convex Analysis and Variational Problems (Amsterdam: North-Holland)
[1] Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037405.
[2] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[3] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
[4] Vortex pinning and rectification effect in a nanostructured superconducting film with a square array of antidot triplets
An He(何安), Cun Xue(薛存), Youhe Zhou(周又和). Chin. Phys. B, 2018, 27(5): 057402.
[5] Dynamics of vortex-antivortex pair in a superconducting thin strip with narrow slits
An He(何安), Cun Xue(薛存), You-He Zhou(周又和). Chin. Phys. B, 2017, 26(4): 047403.
[6] Vortex quasi-crystals in mesoscopic superconducting samples
Jing-Kun Wang(王璟琨), Wei Zhang(张威), Sá de Melo C A R. Chin. Phys. B, 2016, 25(8): 087401.
[7] Interstitial vortex in superconducting film with periodic hole arrays
He Shi-Kun (何世坤), Zhang Wei-Jun (张伟君), Wen Zhen-Chao (温振超), Xiao Hong (肖宏), Han Xiu-Feng (韩秀峰), Gu Chang-Zhi (顾长志), Qiu Xiang-Gang (邱祥冈 ). Chin. Phys. B, 2012, 21(8): 087401.
[8] Abnormal magnetoresistance behavior in Nb thin film with rectangular arrays of antidots
Zhang Wei-Jun(张伟君), He Shi-Kun(何世坤), Li Bo-Hong(李博宏), Cheng Fei(程飞), Xu Bing(许兵), Wen Zhen-Chao(温振超), Cao Wen-Hui(曹文会), Xiao Hong(肖宏), Han Xiu-Feng(韩秀峰), Zhao Shi-Ping(赵士平), and Qiu Xiang-Gang(邱祥冈) . Chin. Phys. B, 2012, 21(7): 077401.
[9] Shot noise of the spin inelastic tunneling through a quantum dot with single molecule-magnet
Chang Bo(常博)and Liang Jiu-Qing(梁九卿). Chin. Phys. B, 2011, 20(1): 017307.
[10] Nonlocal Andreev reflection and spin current in a three-terminal Aharonov--Bohm interferometer
Peng Ju(彭菊)$^†ger$,Yu Hua-Ling(郁华玲), and Wang Zhi-Guo(王之国) . Chin. Phys. B, 2009, 18(12): 5485-5490.
[11] Electronic spin susceptibility of metallic superconductive nano-particles
Li Feng (李凤), Chen Zhi-Qian (陈志谦), Li Qing (李庆). Chin. Phys. B, 2006, 15(5): 1075-1080.
[12] Reduced quantum fluctuation in mesoscopic Josephson junction with nonclassical radiation field at finite temperature
Zhan You-Bang (詹佑邦). Chin. Phys. B, 2004, 13(2): 234-237.
[13] DYNAMICAL BEHAVIOUR OF THE SUPERCURRENT IN MESOSCOPIC JOSEPHSON JUNCTIONS
Yu Kai-zhi (俞开智), Zou Jian (邹健), Shao Bin (邵彬). Chin. Phys. B, 2001, 10(12): 1154-1156.
No Suggested Reading articles found!