Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110202    DOI: 10.1088/1674-1056/21/11/110202
GENERAL Prev   Next  

A nonlinear discrete integrable coupling system and its infinite conservation laws

Yu Fa-Jun (于发军 )
School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034, China
Abstract  We construct a nonlinear integrable coupling of discrete soliton hierarchy, and establish the infinite conservation laws (CLs) for the nonlinear integrable coupling of the lattice hierarchy. As an explicit application of the method proposed in the paper, the infinite conservation laws of the nonlinear integrable coupling of the Volterra lattice hierarchy are presented.
Keywords:  nonlinear integrable coupling system      infinite conservation law      Volterra lattice hierarchy  
Received:  18 January 2012      Revised:  22 May 2012      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the Postdoctoral Science Foundation of China (Grant No. 2011M500404 ) and the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2011119).
Corresponding Authors:  Yu Fa-Jun     E-mail:  yfajun@163.com

Cite this article: 

Yu Fa-Jun (于发军 ) A nonlinear discrete integrable coupling system and its infinite conservation laws 2012 Chin. Phys. B 21 110202

[1] Miura R M 1968 J. Math. Phys. 9 1204
[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[3] Zakharov V and Shabat A 1972 Sov. Phys. JETP 34 62
[4] Konno K, Sanuki H and Ichikawa Y H 1974 Prog. Theor. Phys. 52 886
[5] Kajiwara K, Matsukidaira J and Satsuma J 1990 Phys. Lett. A 146 115
[6] Tsuchida T and Wadati M 1998 J. Phys. Soc. Jpn. 67 1175
[7] Zhang D J and Chen D Y 2002 Chaos Soliton. Fract. 14 573
[8] Zhu Z N, Xue W M, Wu X N and Zhu Z M 2002 J. Phys. A: Math. Gen. 35 5079
[9] Ma W X and Fuchssteiner B 1996 Chaos Soliton. Fract. 7 1227
[10] Ma W X 1992 Chin. J. Cont. Math. 13 79
[11] Guo F K and Zhang Y F 2003 J. Math. Phys. 44 5793
[12] Zhang Y F, Fan E G and Tam H 2006 Phys. Lett. A 359 471
[13] Xia T C and You F C 2007 Chin. Phys. 16 605
[14] Ma W X 2003 Phys. Lett. A 316 72
[15] Fan E G 2000 J. Math. Phys. 41 7769
[16] Ma W X, Xu X X and Zhang Y F 2006 J. Math. Phys. 47 053501
[17] Ma W X, Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125 [RefAutoNo]Zhang Y F and Zhang H Q 2002 J. Math. Phys. 43 466
[19] Yu F J and Zhang H Q 2006 Phys. Lett. A 353 326
[20] Ma W X and Guo F K 1997 Int. J. Theor. Phys. 36 697
[21] Ma W X and Chen M 2006 J. Phys. A: Gen. Math. 39 10787
[22] Ma W X and Zhu Z N 2010 Comput. Math. Appl. 60 2601
[23] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[4] Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy
Yu Fa-Jun(于发军) . Chin. Phys. B, 2012, 21(1): 010201.
No Suggested Reading articles found!