|
|
Generation of multi-atom W states via Raman transitionin an optical cavity |
Wu Chun-Wang(吴春旺)a)†, Han Yang(韩阳) a), Deng Zhi-Jiao(邓志姣)a)b), Liang Lin-Mei(梁林梅)a), and Li Cheng-Zu(李承祖)a) |
a College of Science, National University of Defense Technology, Changsha 410073, China; b Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education of China, Changsha 410081, China |
|
|
Abstract A simple scheme is proposed to generate the W state of N $\Lambda$-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.
|
Received: 05 May 2009
Revised: 04 July 2009
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No. 10504042) and the Key
Laboratory of Low Dimensional Quantum Structures and Quantum Control
(Hunan Normal University), Ministry of Education of China (Grant No.
QSQC0902). |
Cite this article:
Wu Chun-Wang(吴春旺), Han Yang(韩阳), Deng Zhi-Jiao(邓志姣), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖) Generation of multi-atom W states via Raman transitionin an optical cavity 2010 Chin. Phys. B 19 010313
|
[1] |
Bell J S 1965 Physics 1 195
|
[2] |
Chen M F and Ma S S 2008 Chin. Phys. B 17 451
|
[3] |
Chen Z G, Guo Y and Zeng G H 2007 Chin. Phys. 16 2549
|
[4] |
Cheng W W, Huang Y X, Li H and Liu T K 2007 Chin. Phys. 16 38
|
[5] |
Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
|
[6] |
Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
|
[7] |
Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Hroche S 1997 Phys. Rev. Lett. 79 1[ Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902[ Chen L B, Chen Z H, Du Q H, Liu G W and Lin X M 2008 Chin. Phys. B 17 64
|
[8] |
Turchette Q A, Wood C S, King B E, Myatt C J, Leibfrid D, Itano W M, Moroe C and Wineland D J 1998 Phys. Rev. Lett. 81 3631
|
[9] |
H\"affner H, H\"ansel W, Roos C F and Benhelm J 2005 Nature 438 643
|
[10] |
Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
|
[11] |
Roos C F, Riebe M, H\"affner H, H\"ansel W, Benhelm J, Lancaster G P T, Becher C, Schmidt K F and Blatt R 2004 Science 304 1478
|
[12] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565[ Mabuchi H and Doherty A C 2002 Science 298 1372[ Jing H, Li Y and Zhan M S 2007 Chin. Phys. 16 1883[ Chen M F 2006 Chin. Phys. 15 2847
|
[13] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[14] |
Cabello A 2002 Phys. Rev. A 65 032108[ Cabello A 2002 Phys. Rev. A 66 042114
|
[15] |
Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156[ Simon C, Weihs G and Zeilinger A 2000 Phys. Rev. Lett. 84 2993
|
[16] |
Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
|
[17] |
Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
|
[18] |
Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102
|
[19] |
Li J Q, Chen G and Liang J Q 2008 Phys. Rev. A 77 014304
|
[20] |
Marr C, Beige A and Rempe G 2003 Phys. Rev. A 68 033817
|
[21] |
Zheng S B 2005 J. Opt. B 7 139
|
[22] |
Zubairy M S, Kim M and Scully M O 2003 Phys. Rev. A 68 033820
|
[23] |
Dalibard J, Castin Y and M\olmer K 1992 Phys. Rev. Lett. 68 580
|
[24] |
Brion E, Pedersen L H and M\olmer K 2007 J. Phys. A 40 1033
|
[25] |
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse W H and Rempe G 2004 Nature 428 50
|
[26] |
Sauer J A, Fortier K M, Chang M S, Hamley C D and Chapman M S 2004 Phys. Rev. A 69 051804
|
[27] |
Mckeever J, Buck J R, Boozer A D and Kimble H J 2004 Phys. Rev. Lett. 93 143601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|