Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037102    DOI: 10.1088/1674-1056/20/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A new perspective on optoelectric conversion in conjugated polymers

Liu Wen(刘文) a), Zhang Ming-Hua(张明华) a), Li Hai-Hong(李海宏) a), Wang Yong-Juan(王永娟) a), and Liu De-Sheng(刘德胜)a)b)†
a Physics and Information Engineering Department, Jining University, Qufu 273155, China; b School of Physics, Shandong University, Jinan 250100, China
Abstract  Photoexcitation of a neutral soliton will create a polaron and a charged soliton. According to a tight-binding model and a nonadiabatic method, we investigate the dynamical process of these two photogenerated charge carriers in an external electric field. It is found that the polaron and the soliton can pass through each other, which excludes the possibility of carrier recombination that usually occurs in existing organic solar cells. The results indicate a more efficient way to realize the optoelectric conversion by photoexciting polymer materials with soliton defects. On the other hand, it is found that solitons take on greater stability than polarons during collision.
Keywords:  polaron      soliton      optoelectric conversion  
Received:  06 June 2010      Revised:  07 November 2010      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  71.20.Rv (Polymers and organic compounds)  
Fund: Project supported by the Special Funds of the National Natural Foundation of China (Grant No. 11047148), and the Jining University Research Program, China (Grant No. 2010QNKJ04).

Cite this article: 

Liu Wen(刘文), Zhang Ming-Hua(张明华), Li Hai-Hong(李海宏), Wang Yong-Juan(王永娟), and Liu De-Sheng(刘德胜) A new perspective on optoelectric conversion in conjugated polymers 2011 Chin. Phys. B 20 037102

[1] Forrest S, Burrows P and Thompson M 2000 wxIEEE Spectrum37 29
[2] Peumans P, Yakimov A and Forrest S R 2003 wxJ. Appl. Phys.93 3693
[3] Gao K, Xie S J, Li Y, Yin S, Liu D S and Zhao X 2009 wxChin. Phys. B18 2961
[4] Tian R Y, Yang R Q, Peng J B and Cao Y 2005 wxChin. Phys. 14 1032
[5] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 wxNature 427 821
[6] Coakley K M and McGehee M D 2004 wxChem. Mater.16 4533
[7] Andr'es J A and Blau W J 2008 wxCarbon46 2067
[8] Street R A, Schoendorf M, Roy A and Lee J H 2010 wxPhys. Rev. B 81 205307
[9] Holt J, Singh S, Drori T, Zhang Y and Vardeny Z V 2009 wxPhys. Rev. B 79 195210
[10] Kirchartz T, Pieters B E, Taretto K and Rau U 2009 wx Phys. Rev. B80 035334
[11] Sun Z , Li Y , Gao K, Liu D S, An Z and Xie S J 2010 wxOrganic Electronics 11 279
[12] Meng Y, Liu X J, Di B and An Z 2009 wxJ. Chem. Phys 131 244502
[13] Sun Z, Li Y, Xie S J, An Z and Liu D S 2009 wxPhys. Rev. B 79 201310
[14] An Z, Di B, Zhao H and Wu C Q 2008 wxEuro. Phys. J. B 63 71
[15] Zhang D C, Liu D S, Mei L M, Xie S J and Sun X 2005 wxSynth. Met.152 369
[16] Gao K, Liu X J, Liu D S and Xie S J 2007 wxPhys. Rev. B 75 205412
[17] Liu W, Li Y, Sun Z, Liu D S and Xie S J 2008 wxPhys. Lett. A372 4315
[18] Rakhmanova S V and Conwell E M 1999 wxAppl. Phys. Lett. 75 1518 endfootnotesize
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[5] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[6] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[10] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[13] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[14] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[15] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
No Suggested Reading articles found!