Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034502    DOI: 10.1088/1674-1056/20/3/034502
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Symmetry of Hamiltonian and conserved quantity for a system of generalized classical mechanics

Zhang Yi(张毅)
College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract  This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.
Keywords:  symmetry of Hamiltonian      generalized classical mechanics      conserved quantity  
Received:  11 September 2010      Revised:  10 October 2010      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10972151).

Cite this article: 

Zhang Yi(张毅) Symmetry of Hamiltonian and conserved quantity for a system of generalized classical mechanics 2011 Chin. Phys. B 20 034502

[1] Podolsky B 1942 Phys. Rev. 65 228
[2] De Le'on M and Rodrigues P R 1985 Generalized Classical Mechanics and Field Theory (Amsterdam, North-Holland: Elservier Science Publishers B V)
[3] Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press)
[4] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[5] Li Z P and Jiang J H 2002 Symmetries in Constrained Canonical Systems (Beijing: Science Press)
[6] Mei F X 1990 Appl. Math. Mech. 11 569
[7] Qiao Y F, Yue Q W and Dong Y A 1994 Appl. Math. Mech. 15 877
[8] Zhang Y, Shang M and Mei F X 2000 Chin. Phys. 9 401
[9] Qiao Y F, Li R J and Zhao S H 2001 Acta Phys. Sin. 50 811 (in Chinese)
[10] Qiao Y F, Zhang Y L and Han G C 2002 Chin. Phys. 11 988
[11] Luo S K 2002 Acta Phys. Sin. 51 1416 (in Chinese)
[12] Zhang Y 2006 Chin. Phys. 15 1935
[13] Zhang P Y, Fang J H, Wang P and Ding N 2006 Commun. Theor. Phys. (Beijing, China) 45 961
[14] Currie D G and Saletan E F 1966 J. Math. Phys. 7 967
[15] Hojman S and Harleston H 1981 J. Math. Phys. 22 1414
[16] Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press)
[17] Hojman S 1984 J. Phys. A: Math. Gen. 17 2399
[18] Mei F X and Wu H B 2008 Phys. Lett. A 372 2141
[19] Wu H B and Mei F X 2009 Chin. Phys. B 18 3145
[20] Mei F X and Wu H B 2009 Acta Phys. Sin. 58 5919 (in Chinese)
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[3] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[4] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[5] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[6] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[7] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[8] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[9] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[10] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[11] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[12] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[13] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[14] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
[15] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
No Suggested Reading articles found!