Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034701    DOI: 10.1088/1674-1056/20/3/034701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

Jia Meng(贾蒙) dag , Fan Yang-Yu(樊养余), and Tian Wei-Jian(田维坚)
Department of Electronics and Information, Northwestern Poly-technical University, Xi'an 710072, China
Abstract  Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy.
Keywords:  Distinguished hyperbolic trajectory      non-autonomous system      fast computing method      manifold  
Received:  30 June 2010      Revised:  29 November 2010      Accepted manuscript online: 
PACS:  47.20.Kg  
  47.11.Bc (Finite difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60872159).

Cite this article: 

Jia Meng(贾蒙), Fan Yang-Yu(樊养余), and Tian Wei-Jian(田维坚) A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system 2011 Chin. Phys. B 20 034701

[1] Ni F, Xu W, Fang T and Yue X 2010 Chin. Phys. B 19 010510
[2] Liu Y L, Zhu J and Luo X S 2009 Chin. Phys. B 18 3772
[3] Jiang G R, Xu B G and Yang Q G 2009 Chin. Phys. B 18 5235
[4] Jiang G R and Yang Q G 2008 Chin.Phys. B 17 4114
[5] Zuo H L, Xu J X and Jiang J 2008 Chin. Phys. B 17 117
[6] Jin Y F and Xu M 2010 Chin. Phys. Lett. 27 040501
[7] Mancho A M, Small D and Wiggins S 2006 Phys. Rep. 437 55
[8] Mancho A M, Small D and Wiggins S 2004 Nonlinear Processes Geophys. 11 17
[9] Mancho A M, Small D, Wiggins S and Ide K 2003 Physica D 182 188
[10] Mancho A M, Small D, Wiggins S and Ide K 2006 Comput. Fluids 35 416
[11] Ju N, Small D and Wiggins S 2003 Int. J. Bifurcation Chaos Appl. Sci. Eng. 2113 1449
[12] Mancho A M, Hern'andez-Garc'hia E, Small D and Wiggins S 2008 J. Phys. Oceanogr. 38 1222
[13] Branicki M and Wiggins S 2009 Physica D 238 1625
[14] Jim'enez-Madrid J A and Mancho A M 2009 Chaos 19 013111
[15] Zhang Y, Lei Y M and Fang T 2009 Acta Phys. Sin. 6 3799 (in Chinese)
[16] Zhang Q C, Li W Y and Wang W 2010 Acta Phys. Sin. 59 729 (in Chinese)
[17] He X S, Deng F Y, Wu G Y and Wang R 2010 Acta Phys. Sin. 59 25 (in Chinese)
[18] Zhang Q F, Chen Z Y and Bi Q S 2010 Acta Phys. Sin. 59 3057 (in Chinese)
[19] He X J, Zhang L X and Ren A D 2010 Acta Phys. Sin. 59 3088 (in Chinese)
[20] Dong G G, Zheng S, Tian L X, Du R J and Sun M 2009 Chin. Phys. B 19 070514 endfootnotesize
[1] Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system
Dong En-Zeng(董恩增), Chen Zeng-Qiang(陈增强), Chen Zai-Ping(陈在平), and Ni Jian-Yun(倪建云) . Chin. Phys. B, 2012, 21(3): 030501.
[2] Dynamic bifurcation of a modified Kuramoto–Sivashinsky equation with higher-order nonlinearity
Huang Qiong-Wei(黄琼伟) and Tang Jia-Shi(唐驾时) . Chin. Phys. B, 2011, 20(9): 094701.
[3] Generalized synchronization of two unidirectionally coupled discrete stochastic dynamical systems
Yuan Zhi-Ling(袁志玲), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(7): 070503.
[4] Generalized spatiotemporal chaos synchronization of the Ginzburg–Landau equation
Jin Ying-Hua(金英花) and Xu Zhen-Yuan(徐振源) . Chin. Phys. B, 2011, 20(12): 120505.
[5] Hölder continuity of two types of bidirectionally coupled generalised synchronisation manifold
Guo Liu-Xiao(过榴晓), Xu Zhen-Yuan(徐振源), and Hu Ai-Hua(胡爱花) . Chin. Phys. B, 2011, 20(1): 010507.
[6] Stability for manifolds of equilibrium states of generalized Birkhoff system
Li Yan-Min(李彦敏) and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2010, 19(8): 080302.
[7] Shilnikov sense chaos in a simple three-dimensional system
Wang Wei(王炜), Zhang Qi-Chang(张琪昌), and Tian Rui-Lan(田瑞兰). Chin. Phys. B, 2010, 19(3): 030517.
[8] The existence of generalized synchronisation of three bidirectionally coupled chaotic systems
Hu Ai-Hua(胡爱花), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓). Chin. Phys. B, 2010, 19(2): 020511.
[9] Nonlinear consensus protocols for multi-agent systems based on centre manifold reduction
Li Yu-Mei(李玉梅) and Guan Xin-Ping(关新平). Chin. Phys. B, 2009, 18(8): 3355-3366.
[10] Local bifurcation analysis of a four-dimensional hyperchaotic system
Wu Wen-Juan(吴文娟), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉) . Chin. Phys. B, 2008, 17(7): 2420-2432.
[11] Adaptive coupled synchronization of non-autonomous systems in ring networks
Guo Liu-Xiao(过榴晓), Xu Zhen-Yuan(徐振源), and Hu Man-Feng(胡满峰). Chin. Phys. B, 2008, 17(3): 836-841.
[12] Impulsive generalized synchronization of chaotic system
Zhang Rong(张荣), Xu Zhen-Yuan (徐振源), and He Xue-Ming(何雪明). Chin. Phys. B, 2007, 16(7): 1912-1917.
[13] Noise reduction method based on weighted manifold decomposition
Gan Jian-Chao (甘建超), Xiao Xian-Ci (肖先赐). Chin. Phys. B, 2004, 13(3): 312-316.
[14] Stability for the equilibrium state manifold of relativistic Birkhoffian systems
Fu Jing-Li (傅景礼), Chen Li-Qun (陈立群), Luo Yi (骆毅), Luo Shao-Kai (罗绍凯). Chin. Phys. B, 2003, 12(4): 351-356.
[15] CANONICAL FORMULATION OF NONHOLONOMIC CONSTRAINED SYSTEMS
Guo Yong-xin (郭永新), Yu Ying (于莹), Huang Hai-jun (黄海军). Chin. Phys. B, 2001, 10(1): 1-6.
No Suggested Reading articles found!