Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114701    DOI: 10.1088/1674-1056/20/11/114701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme

Wang Hui(王辉)a), Huang Zhi-Xiang(黄志祥)a)†, Wu Xian-Liang(吴先良)a)b), and Ren Xin-Gang(任信钢)a)
a Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Anhui University, Hefei 230039, China; b Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061, China
Abstract  The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite-difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
Keywords:  splitting plane-wave finite-difference time-domain      high-order symplectic finite-difference time-domain scheme      plane-wave source  
Received:  31 March 2011      Revised:  09 May 2011      Accepted manuscript online: 
PACS:  47.11.Bc (Finite difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60931002 and 61101064) and the Universities Natural Science Foundation of Anhui Province, China (Grant Nos. KJ2011A002 and 1108085J01).

Cite this article: 

Wang Hui(王辉), Huang Zhi-Xiang(黄志祥), Wu Xian-Liang(吴先良), and Ren Xin-Gang(任信钢) Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme 2011 Chin. Phys. B 20 114701

[1] Wang S Y, Liu S B and Li L W J 2010 Chin. Phys. B 19 084101
[2] Ding L, Liu J S and Wang K J 2010 Chin. Phys. B 19 127302
[3] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3 edn.) (Norwood, MA: Artech House) pp. 186-210
[4] Winton S C, Kosmas P and Rappaport C M 2005 IEEE Trans. Antennas Propag. 53 1721
[5] Guiffaut C and Mahdjoubi K 2000 IEEE Antennas Propag. Soc. Int. Symp., Salt Lake City, UT, 1 236
[6] Oguz U and Gurel L 1998 IEEE Trans. Micro. Theory Tech. 46 869
[7] Schneider J B 2004 IEEE Trans. Antennas Propag. 52 3280
[8] Tan T and Potter M 2007 IEEE Antennas Wireless Propag. Lett. 6 144
[9] Hadi F 2009 IEEE Trans. Antenna Prop. 57 2691
[10] Tan T and Potter M 2010 IEEE Trans. Antenna Prop. 58 824
[11] Tan T and Potter M 2010 IEEE Trans. Antenna Prop. 58 2641
[12] Zhang C L, Qi Y Y, Liu X S and Ding P Z 2009 Acta Phys. Sin. 58 3078 (in Chinese)
[13] Liu S X, Guo Y X and Liu C 2008 Acta Phys. Sin. 57 1311 (in Chinese)
[14] Hirono T, Lui W, Seki S and Yoshikuni Y 2001 IEEE Trans. Microw. Theory Tech. 49 1640
[15] Sha W, Huang Z X, Chen M S and Wu X L 2008 IEEE Trans. Antennas Propag. 56 493
[16] Wang J Y, Liu P and Long Y L 2010 IEEE Antennas and Wireless Propag. Lett. 9 371
[1] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[2] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[3] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[4] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[5] Stabilized seventh-order dissipative compact scheme for two-dimensional Euler equations
Jia-Xian Qin(秦嘉贤), Ya-Ming Chen(陈亚铭), Xiao-Gang Deng(邓小刚). Chin. Phys. B, 2019, 28(10): 104701.
[6] Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique
Guang-Ming Guo(郭广明), Hong Liu(刘洪). Chin. Phys. B, 2017, 26(6): 064701.
[7] Numerical investigation of a coupled moving boundary model of radial flow in low-permeable stress-sensitive reservoir with threshold pressure gradient
Wen-Chao Liu(刘文超), Yue-Wu Liu(刘曰武), Cong-Cong Niu(牛丛丛), Guo-Feng Han(韩国锋), Yi-Zhao Wan(万义钊). Chin. Phys. B, 2016, 25(2): 024701.
[8] Fluorescence enhancement of radix angelica dahurica by binding to single silver sphere
Wang Qing-Ru (王青如), Shi Qiang (史强), Li Shu-Hong (李淑红), Wang Wen-Jun (王文军). Chin. Phys. B, 2015, 24(5): 057803.
[9] A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system
Jia Meng(贾蒙), Fan Yang-Yu(樊养余), and Tian Wei-Jian(田维坚). Chin. Phys. B, 2011, 20(3): 034701.
[10] Mode coupling in nonlinear Kelvin--Helmholtz instability
Wang Li-Feng(王立锋), Ye Wen-Hua(叶文华), Li Ying-Jun(李英骏), and Meng Li-Min(孟立民). Chin. Phys. B, 2008, 17(10): 3792-3798.
No Suggested Reading articles found!