|
|
Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimallength |
Y Charguia)†, L Chetouanib), and A Trabelsia)c) |
a Unité de Recherche de Physique Nucléaire et des Hautes Energies, Faculté des Sciences de Tunis, 1080 Tunis, Tunisia; b Département de Physique Théorique, Institut de Physique, Université de Constantine, Route Ain El Bey, Constantine, Algeria; c Centre National des Sciences et Technologies Nucléaires, Technopole de Sidi-Thabet 2020, Tunisia |
|
|
Abstract Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.
|
Received: 27 May 2009
Revised: 27 May 2009
Accepted manuscript online:
|
PACS:
|
03.65.Pm
|
(Relativistic wave equations)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Cite this article:
Y Chargui, L Chetouani, and A Trabelsi Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimallength 2010 Chin. Phys. B 19 020305
|
[1] |
't Hooft G 1974 Nucl. Phys. B 75461
|
[2] |
Kogut J and Susskind L 1974 Phys. Rev. D 93501
|
[3] |
Glasser M L and Shawagfeh N 1984 J. Math. Phys. 25 2533
|
[4] |
Domí nguez-Adame F and Mendez B 1992 Nuovo Cimento B 107 489
|
[5] |
Su R K and Yuhong Z 1984 J. Phys. A 17 851
|
[6] |
Su R K and Ma Z Q 1986 J. Phys. A 19 1739
|
[7] |
Capri A Z and Ferrari R 1985 Can. J. Phys. 6 31029
|
[8] |
Galic H 1988 Am. J. Phys. 56 312
|
[9] |
Gross D J and Mende P F 1988 Nucl. Phys. B 30 3407
|
[10] |
Konishi K, Paffuti G and Provero P 1990 Phys. Lett. B 234 276
|
[11] |
Amati D, Ciafaloni M and Veneziano G 1989 Phys. Lett. B 216 41
|
[12] |
Rovelli C 1998 Living Rev. Rel. 1 1
|
[13] |
Thiemann T 2003 Lect. Notes Phys. 631 41
|
[14] |
Perez A 2003 Class. Quantum Grav. 20 43
|
[15] |
Kempf A 1994 J. Math. Phys. 35 4483
|
[16] |
Kempf A, Mangano G and Mann R B Phys. Rev. D 521108
|
[17] |
Kempf A 1997 J. Phys. A 30 2093
|
[18] |
Hinrichsen H and Kempf A 1996 J. Math. Phys. 37 2121
|
[19] |
Susskind L and Witten E hep-th/9805114
|
|
[ 19a]Peet A W and PolchinskiJ 1999 Phys. Rev. D 59 065011
|
[20] |
Douglas R M and Nekrasov N A 2002 Rev. Mod. Phys. 73 977
|
[21] |
Ramchander R Sastry 2000 J. Phys. A 33 8305
|
[22] |
Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys.Rev. D 65 125027
|
[23] |
Fitio T V, Vacarchuk I O and Tkachuk V M 2006 J.Phys. A 39 2143
|
[24] |
Brau F 1999 J. Phys. A 32 7691
|
[25] |
Akhoury A and Yao Y P 2003 Phys. Lett. B 57 237
|
[26] |
Benczik S, Chang L N, Minic D and Takeuchi T 2002 Phys.Rev. A 72 012104
|
[27] |
Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys.Rev. D 65 125028
|
[28] |
Benczik S, Chang L N, Minic D, Okamura N, Rayyan S and Takeuchi T2002 Phys. Rev. D 66 026003
|
[29] |
Nouicer K 2006 J. Phys. A 39 5125
|
[30] |
Quesne C and Tkachuk V M 2005 J. Phys. A 381747
|
[31] |
Douglas M R and Nekrasov N A 2001 Rev. Mod. Phys. 73 977
|
[31a] |
Hull C M 1998 JHEP 9807 021
|
[31b] |
Hull C M 1998 JHEP 9811 017
|
[31c] |
Balasubramanian V, Horava P and Minic D 2001 JHEP 0105 043
|
[31d] |
Witten E 2001 Quantum Gravity in De Sitter Space} preprinthep-th/0106109
|
[31e] |
Strominger A 2001 JHEP 0110 034
|
[31f] |
Strominger A 2001 JHEP 0111 049
|
[31g] |
Balasubramanian V, Boer J de and Minic D 2002 Phys. Rev. D 65 123508
|
[32] |
Abramowitz M and Stegun I 1965 Handbook of MathematicalFunctions (New York: Dover)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|