Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114202    DOI: 10.1088/1674-1056/19/11/114202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Transmittance investigation on capacitive mesh on thick dielectric substrates as output windows for optically pumped terahertz lasers

Qi Chun-Chao(祁春超), Zuo Du-Luo(左都罗), Lu Yan-Zhao(卢彦兆), Tang Jian(唐建), and Cheng Zu-Hai(程祖海)
Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
Keywords:  physical optics      capacitive mesh structure      output coupler      optically pumped Terahertz laser  
Received:  05 October 2009      Revised:  19 April 2010      Accepted manuscript online: 
PACS:  07.57.-c (Infrared, submillimeter wave, microwave and radiowave instruments and equipment)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007) and partly by the National Basic Research Program of China (973 Program)(Grant No. 61328).

Cite this article: 

Qi Chun-Chao(祁春超), Zuo Du-Luo(左都罗), Lu Yan-Zhao(卢彦兆), Tang Jian(唐建), and Cheng Zu-Hai(程祖海) Transmittance investigation on capacitive mesh on thick dielectric substrates as output windows for optically pumped terahertz lasers 2010 Chin. Phys. B 19 114202

[1] Qi C C, Zuo D L, Meng F Q, Lu Y Z, Jiu Z X and Cheng Z H 2009 emphActa Phys. Sin. 58 4641 (in Chinese)
[2] Qi C C and Cheng Z H 2009 emphChin. Phys. Lett. 26 064201-1
[3] Moretti A, Moruzzi G, Strumia F, Moraes J C S and Carelli G 2008 emphIEEE J. Quantum Electron. 44 1104
[4] Bailey Jr W A, Gatesman A J, Gingras K R and Goodhue W D 2000 emphOpt. Lett. 25 1349
[5] Wang J X, Qin Y L, Yan H Q, Gao P Q, Li J S, Yin M and He D Y 2009 emphChin. Phys. B 18 773
[6] Qin J Y, Zheng X S, Luo X Z, Huang X and Lin Y K 1998 emphIEEE J. Quantum Electron. 34 32
[7] Liu H, Xu D G and Yao J Q 2008 emphActa Phys. Sin. 57 5662 (in Chinese)
[8] Telles E M, Moraes J C S, Scalabrin A, Pereira D, Moretti A and Strumia F 1991 emphAppl. Phys. B 52 36
[9] Mueller E R, Wilson T E and Waldman J 1994 emphAppl. Phys. Lett. 64 3383
[10] Scalari G, Ajili L, Faist J, Beere H, Davies G, Linfield E and Ritchie D 2003 emphAppl. Phys. Lett. 82 3165
[11] Chen H and Wang L 2009 emphChin. Phys. B 18 2785
[12] MacDonald M, Alexnian A, York R A, Popovic Z and Grossman E N 2000 emphIEEE Trans. Microwave Theory Tech. 48 712 6046
[13] Densing R, Erstling A, Gogolewski M, Gemund H P, Lundershausen G L and Gatesman A 1992 emphInfrared Phys. 33 219
[14] Ohba T and Ikawa S I 1988 emphJ. Appl. Phys. 64 4141
[15] Grischkowsky D, Keiding S, van Exter M and Fattinger C 1990 emphJ. Opt. Soc. Am. B 7 2006
[16] Whitbourn L B and Compton R C 1985 emphAppl. Opt. 24 217
[17] Winnewisser C, Lewen F and Helm H 1998 emphAppl. Phys. A 66 593 endfootnotesize
[1] Modified physical optics algorithm for near field scattering
Bin Chen(陈彬), Chuangming Tong(童创明). Chin. Phys. B, 2018, 27(11): 114102.
[2] Terahertz time-domain spectroscopy of a simulated pore structure to probe particle size and porosity of porous rock
Dong Chen (董晨), Bao Ri-Ma (宝日玛), Zhao Kun (赵昆), Xu Chang-Hong (许长虹), Jin Wu-Jun (金武军), Zhong Shou-Xian (钟寿仙). Chin. Phys. B, 2014, 23(12): 127802.
[3] Theoretical study of power amplification in tapered fiber with multi-seed parallel injection
Xiao Qi-Rong (肖起榕), Ren Hai-Cui (任海翠), Li Dan (李丹), Gong Ma-Li (巩马理), Yan Ping (闫平). Chin. Phys. B, 2013, 22(11): 114208.
[4] Experimental investigation on partially coherent higher-order non-diffractive beams
Chen Guang-Ming(陈光明), Hua Li-Ming(华黎闽), Lin Hui-Chuan(林惠川), and Pu Ji-Xiong(蒲继雄) . Chin. Phys. B, 2011, 20(9): 094203.
[5] Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems
Ge Di (戈迪), Cai Yang-Jian (蔡阳健), Lin Qiang (林强). Chin. Phys. B, 2005, 14(1): 128-132.
No Suggested Reading articles found!