Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 103401    DOI: 10.1088/1674-1056/19/10/103401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl2 and its isotopes

Shi De-Heng(施德恒)a) b) †, Zhang Xiao-Niu(张小妞)b), Liu Hui(刘慧)a), Zhu Zun-Lue(朱遵略)b), and Sun Jin-Feng(孙金锋)b)
a College of Physics & Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; b College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The potential energy curve of the Cl2(X1Σg+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 35Cl37Cl(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings.
Keywords:  isotope effect      spectroscopic parameter      molecular constant      vibrational level  
Received:  01 February 2010      Revised:  20 April 2010      Accepted manuscript online: 
PACS:  31.50.Bc (Potential energy surfaces for ground electronic states)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
  33.20.Sn (Rotational analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012), the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008) and the Natural Science Foundation of Educational Bureau of Henan Province of China (Grant No. 2010B140013).

Cite this article: 

Shi De-Heng(施德恒), Zhang Xiao-Niu(张小妞), Liu Hui(刘慧), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋) Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl2 and its isotopes 2010 Chin. Phys. B 19 103401

[1] Martinez E 1986 wxJ. Quantum Spectrosc. Radiat. Transfer. 35 401
[2] Coxon J A and Shanker R 1978 wxJ. Mol. Spectrosc. 69 109
[3] Coxon J A 1971 wxJ. Quantum Spectrosc. Radiat. Transfer. 11 443
[4] Coxon J A 1980 wxJ. Mol. Spectrosc. 82 264
[5] Travnikova O, Fink R F, Kivimäki A, Céolin D, Bao Z and Piancastelli M N 2006 wxChem. Phys. Lett. 426 452
[6] Bermejo D, Jiménez J J and Mart'hi nez R Z 2002 wxJ. Mol. Spectrosc. 212 186
[7] Douglas A E and Hoy A R 1975 wxCan. J. Phys. 53 1965
[8] Le Roy R J and Bernstein R B 1971 wxJ. Mol. Spectrosc. 37 109
[9] Hochenbleicher G and Schrõtter H W 1971 wxAppl. Spectrosc. 25 360
[10] Le Roy R J and Bernstein R B 1970 wxChem. Phys. Lett. 5 42
[11] Diesen R W and Felmlee W J 1963 wxJ. Chem. Phys. 39 2115
[12] Douglas A E, Moller C K and Stoicheff B P 1963 wxCan. J. Phys. 41 1174
[13] Rao Y V and Venkateswarlu P 1962 wxJ. Mol. Spectrosc. 9 173
[14] Stammreich H and Forneris R 1961 wxSpectrochimica Acta 17 775
[15] Huber K P and Herzberg G 1979 wxMolecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p. 148
[16] Heil T G, O'Neil S V and Schaefer III H F 1970 wxChem. Phys. Lett. 5 253
[17] Das G 1981 wxChem. Phys. Lett. 79 305
[18] Sakai Y, Tatewaki H and Huzinaga S 1981 wxJ. Comp. Chem. 2 108
[19] Peyerimhoff S D and Buenker R J 1981 wxChem. Phys. 57 279
[20] McLean A D, Liu B and Chandler G S 1984 wxJ. Chem. Phys. 80 5130
[21] Stevens W J, Basch H and Krauss M 1984 wxJ. Chem. Phys. 81 6026
[22] Becherer R and Ahlrichs R 1985 wxChem. Phys. 99 389
[23] Woon D E and Dunning T H 1994 wxJ. Chem. Phys. 101 8877
[24] Visscher L and Dyall K G 1996 wxJ. Chem. Phys. 104 9040
[25] Dolg M 1996 wxMol. Phys. 88 1645
[26] Fossgaard O, Gropen O, Valero M C and Saue T 2003 wxJ. Chem. Phys. 118 10418
[27] Lee H S, Cho W K, Choi Y J and Lee Y S 2005 wxChem. Phys. 311 121
[28] Coriani S, Marchesan D, Gauss J, H"attig C, Helgaker T and Jorgensen P 2005 wxJ. Chem. Phys. 123 184107
[29] Haiduke R L A, Comar M and da Silva A B F 2006 wxChem. Phys. 331 173
[30] Werner H J and Knowles P J 1988 wxJ. Chem. Phys. 89 5803
[31] Knowles P J and Werner H J 1988 wxChem. Phys. Lett. 145 514
[32] Peterson K A, Woon D E and Dunning T H 1994 wxJ. Chem. Phys. 100 7410
[33] Peterson K A, Kendall R A and Dunning T H 1993 wxJ. Chem. Phys. 99 1930
[34] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Kõppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio program
[35] Shi D H, Liu H, Sun J F, Zhu Z L and Liu Y F 2010 wxActa Phys. Sin. 59 227 (in Chinese)
[36] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 wxChin. Phys. B 19 013501
[37] Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 wxChin. Phys. B 19 053401
[38] Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 wxUser Manual, Molcas Version 7.4 (Lund: Lund University)
[39] Hirata S, Yanai T, de Jong W A, Nakajima T and Hirao K 2004 wxJ. Chem. Phys. 120 3297
[40] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 wxMol. Phys. 98 1823
[41] Wu L, Yang X H and Chen Y Q 2009 wxChin. Phys. B 18 2724 endfootnotesize
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[3] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[4] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[5] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[6] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[7] Accurate spectroscopic constants of the lowest two electronic states in S2 molecule with explicitly correlated method
Changli Wei(魏长立), Xiaomei Zhang(张晓美), Dajun Ding(丁大军), Bing Yan(闫冰). Chin. Phys. B, 2016, 25(1): 013102.
[8] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling (吴玲), You Su-Ping (尤素萍), Shao Xu-Ping (邵旭萍), Chen Gang-Jin (陈钢进), Ding Ning (丁宁), Wang You-Mei (汪友梅), Yang Xiao-Hua (杨晓华). Chin. Phys. B, 2015, 24(8): 083301.
[9] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[10] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[11] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
[12] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[15] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min (王杰敏), Liu Qiang (刘强). Chin. Phys. B, 2013, 22(9): 093102.
No Suggested Reading articles found!