|
|
Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl2 and its isotopes |
Shi De-Heng(施德恒)a) b) †, Zhang Xiao-Niu(张小妞)b), Liu Hui(刘慧)a), Zhu Zun-Lue(朱遵略)b), and Sun Jin-Feng(孙金锋)b) |
a College of Physics & Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; b College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract The potential energy curve of the Cl2(X1Σg+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 35Cl37Cl(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1Σg+), the values of D0, De, Re, ωe, ωeχe, $\alpha$e and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings.
|
Received: 01 February 2010
Revised: 20 April 2010
Accepted manuscript online:
|
PACS:
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.20.Sn
|
(Rotational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012), the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008) and the Natural Science Foundation of Educational Bureau of Henan Province of China (Grant No. 2010B140013). |
Cite this article:
Shi De-Heng(施德恒), Zhang Xiao-Niu(张小妞), Liu Hui(刘慧), Zhu Zun-Lue(朱遵略), and Sun Jin-Feng(孙金锋) Theoretical investigations of spectroscopic parameters and molecular constants for electronic ground state of Cl2 and its isotopes 2010 Chin. Phys. B 19 103401
|
[1] |
Martinez E 1986 wxJ. Quantum Spectrosc. Radiat. Transfer. 35 401
|
[2] |
Coxon J A and Shanker R 1978 wxJ. Mol. Spectrosc. 69 109
|
[3] |
Coxon J A 1971 wxJ. Quantum Spectrosc. Radiat. Transfer. 11 443
|
[4] |
Coxon J A 1980 wxJ. Mol. Spectrosc. 82 264
|
[5] |
Travnikova O, Fink R F, Kivimäki A, Céolin D, Bao Z and Piancastelli M N 2006 wxChem. Phys. Lett. 426 452
|
[6] |
Bermejo D, Jiménez J J and Mart'hi nez R Z 2002 wxJ. Mol. Spectrosc. 212 186
|
[7] |
Douglas A E and Hoy A R 1975 wxCan. J. Phys. 53 1965
|
[8] |
Le Roy R J and Bernstein R B 1971 wxJ. Mol. Spectrosc. 37 109
|
[9] |
Hochenbleicher G and Schrõtter H W 1971 wxAppl. Spectrosc. 25 360
|
[10] |
Le Roy R J and Bernstein R B 1970 wxChem. Phys. Lett. 5 42
|
[11] |
Diesen R W and Felmlee W J 1963 wxJ. Chem. Phys. 39 2115
|
[12] |
Douglas A E, Moller C K and Stoicheff B P 1963 wxCan. J. Phys. 41 1174
|
[13] |
Rao Y V and Venkateswarlu P 1962 wxJ. Mol. Spectrosc. 9 173
|
[14] |
Stammreich H and Forneris R 1961 wxSpectrochimica Acta 17 775
|
[15] |
Huber K P and Herzberg G 1979 wxMolecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p. 148
|
[16] |
Heil T G, O'Neil S V and Schaefer III H F 1970 wxChem. Phys. Lett. 5 253
|
[17] |
Das G 1981 wxChem. Phys. Lett. 79 305
|
[18] |
Sakai Y, Tatewaki H and Huzinaga S 1981 wxJ. Comp. Chem. 2 108
|
[19] |
Peyerimhoff S D and Buenker R J 1981 wxChem. Phys. 57 279
|
[20] |
McLean A D, Liu B and Chandler G S 1984 wxJ. Chem. Phys. 80 5130
|
[21] |
Stevens W J, Basch H and Krauss M 1984 wxJ. Chem. Phys. 81 6026
|
[22] |
Becherer R and Ahlrichs R 1985 wxChem. Phys. 99 389
|
[23] |
Woon D E and Dunning T H 1994 wxJ. Chem. Phys. 101 8877
|
[24] |
Visscher L and Dyall K G 1996 wxJ. Chem. Phys. 104 9040
|
[25] |
Dolg M 1996 wxMol. Phys. 88 1645
|
[26] |
Fossgaard O, Gropen O, Valero M C and Saue T 2003 wxJ. Chem. Phys. 118 10418
|
[27] |
Lee H S, Cho W K, Choi Y J and Lee Y S 2005 wxChem. Phys. 311 121
|
[28] |
Coriani S, Marchesan D, Gauss J, H"attig C, Helgaker T and Jorgensen P 2005 wxJ. Chem. Phys. 123 184107
|
[29] |
Haiduke R L A, Comar M and da Silva A B F 2006 wxChem. Phys. 331 173
|
[30] |
Werner H J and Knowles P J 1988 wxJ. Chem. Phys. 89 5803
|
[31] |
Knowles P J and Werner H J 1988 wxChem. Phys. Lett. 145 514
|
[32] |
Peterson K A, Woon D E and Dunning T H 1994 wxJ. Chem. Phys. 100 7410
|
[33] |
Peterson K A, Kendall R A and Dunning T H 1993 wxJ. Chem. Phys. 99 1930
|
[34] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Kõppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio program
|
[35] |
Shi D H, Liu H, Sun J F, Zhu Z L and Liu Y F 2010 wxActa Phys. Sin. 59 227 (in Chinese)
|
[36] |
Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 wxChin. Phys. B 19 013501
|
[37] |
Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 wxChin. Phys. B 19 053401
|
[38] |
Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 wxUser Manual, Molcas Version 7.4 (Lund: Lund University)
|
[39] |
Hirata S, Yanai T, de Jong W A, Nakajima T and Hirao K 2004 wxJ. Chem. Phys. 120 3297
|
[40] |
Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 wxMol. Phys. 98 1823
|
[41] |
Wu L, Yang X H and Chen Y Q 2009 wxChin. Phys. B 18 2724 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|