Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017303    DOI: 10.1088/1674-1056/19/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Extraordinary optical transmission through metal gratings with single and double grooved surfaces

Wang Li-Chun(汪丽春)a)b), Deng Li(邓立) a)b), Cui Ni(崔妮)a)b) Niu Yue-Ping(钮月萍)a), and Gong Shang-Qing(龚尚庆)a)†
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Abstract  We investigate the transmission properties of a normally incident TM plane wave through metal films with periodic parabolic-shaped grooves on single and double surfaces using the finite-difference-time-domain method. Nearly zero transmission efficiency is found at wavelengths corresponding to surface plasmon excitation on a flat surface in the case where the single surface is grooved. Meanwhile, resonant excitation of surface plasmon polariton (SPP) Bloch modes leads to a strong transmission peak at slightly larger wavelengths. When the grating is grooved on double surfaces, the transmission enhancement can be dramatically improved due to the resonant tunnelling between SPP Bloch modes.
Keywords:  metal grating      surface plasmon      transmission  
Received:  19 February 2009      Revised:  20 March 2009      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Dj (Gratings)  
  68.55.-a (Thin film structure and morphology)  
  78.66.Bz (Metals and metallic alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60708008) and the Project of Academic Leaders in Shanghai (Grant No. 07XD14030) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Cite this article: 

Wang Li-Chun(汪丽春), Deng Li(邓立), Cui Ni(崔妮) Niu Yue-Ping(钮月萍), and Gong Shang-Qing(龚尚庆) Extraordinary optical transmission through metal gratings with single and double grooved surfaces 2010 Chin. Phys. B 19 017303

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Smolyaninov I I, Elliott J, Wurtz G, Zayats A V and Davis C C 2006 Appl. Phys. B 84 253
[3] Altewischer E, Exter M P and Woerdman J P 2002 Nature 418 304
[4] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[5] Astilean S, Lalanne P and Palamaru M 2000 Opt. Commun. 175 265
[6] Klein Koerkamp K J, Enoch S, Segerink F B, Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[7] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, García-Vidal F J and Ebbesen T W 2002 Science 297 820
[8] Wang L C, Niu Y P, Guo H J and Gong S Q 2008 J. Mod. Optics 56 738
[9] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401.
[10] Yang F and Sambles J R 2002 Phys. Rev. Lett. 89 63901
[11] Porto J A, García-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 02845
[12] Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[13] Xie Y, Zakharian A R, Moloney J V and Mansuripur M 2005 Opt. Express 13 4485
[14] Schr?ter U and Heitmann D 1999 Phys. Rev. B 60 4992
[15] Darmanyan S A and Zayats A V 2003 Phys. Rev. B 67 035424
[16] Hooper I R and Sambles J R 2003 Phys. Rev. B 67 235404
[17] Danmanyan S A, Nevière M and Zayats A V 2004 Phys. Rev. B 70 075103
[18] Smolyaninov I I and Davis C C 2004 Phys. Rev. B 69 205417
[19] Gérard D, Salomon L, Fornel F and Zayats A V 2004 Opt. Express 12 3652
[20] Smolyaninov I I, Hung Y J and Davis C C 2005 Appl. Phys. Lett. 87 041101
[21] Gérard D, Salomon L and Fornel F 2005 Opt. Lett. 30 780
[22] Taflove A and Hagness S 2000 Computational Electrodynamics: The Finite Difference Time-Domain Method 2nd ed. (Boston, MA: Artech House)
[23] Sobnack M B, Tan W C, Wanstall N P, Preist T W and Sambles J R 1998 Phys. Rev. Lett. 80 5667
[24] Tan W C, Preist T W and Sambles R J 2000 Phys. Rev. B 62 11134
[25] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando, FL: Academic)
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[9] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[10] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[13] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
No Suggested Reading articles found!