Abstract Based on the Ehresmann connection theory and symplectic geometry, the canonical formulation of nonholonomic constrained mechanical systems is described. Following the Lagrangian formulation of the constrained system, the Hamiltonian formulation is given by Legendre transformation. The Poisson bracket defined by an anti-symmetric tensor does not satisfy the Jacobi identity for the nonintegrability of nonholonomic constraints. The constraint manifold can admit symplectic submanifold for some cases, in which the Lie algebraic structure exists.
Received: 21 May 2000
Revised: 16 June 2000
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.