Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 249-254    DOI: 10.1088/1674-1056/17/1/043
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

New criterion in predicting glass forming ability of various glass-forming systems

X. H. Du(杜兴蒿)a)b)† and J. C. Huang(黄志青)a)
a Institute of Materials Science and Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, China; b Department of Materials Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, China
Abstract  It has been confirmed that glass-forming ability (GFA) of supercooled liquids is related to not only liquid phase stability but also the crystallization resistance. In this paper, it is found that the liquid region interval ($T_{\rm l}-T_{\rm g})$ characterized by the normalized parameter of $T_{\rm g}$/$T_{\rm l}$ could reflect the stability of glass-forming liquids at the equilibrium state, whilst the normalization of supercooled liquid region $\Delta T_{\rm x}$=($T_{\rm x}-T_{\rm g})$, i.e. $\Delta T_{\rm x}$/$T_{\rm x}$ (wherein $T_{\rm l}$ is the liquidus temperature, $T_{\rm g}$ the glass transition temperature, and $T_{\rm x}$ the onset crystallization temperature) could indicate the crystallization resistance during glass formation. Thus, a new parameter, defined as $\xi =T_{\rm g}$/$T_{\rm l}+\Delta T_{\rm x}$/$T_{\rm x}$ is established to predict the GFA of supercooled liquids. In comparison with other commonly used criteria, this parameter demonstrates a better statistical correlation with the GFA for various glass-forming systems including metallic glasses, oxide glasses and cryoprotectants.
Keywords:  glass-forming systems      glass forming ability      criterion  
Accepted manuscript online: 
PACS:  64.70.P- (Glass transitions of specific systems)  
  64.70.D- (Solid-liquid transitions)  
Fund: Project supported by National Science Council, Taiwan, China (Grant No NSC 94-2216-E-110-010) and post-doc sponsorship from National Science Council, Taiwan, China (Grant No NSC 95-2816-E-110-001).

Cite this article: 

X. H. Du(杜兴蒿) and J. C. Huang(黄志青) New criterion in predicting glass forming ability of various glass-forming systems 2008 Chin. Phys. B 17 249

[1] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[2] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[3] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[4] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[5] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[6] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[7] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[8] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[9] Separability criteria based on Heisenberg-Weyl representation of density matrices
Jingmei Chang(常景美), Meiyu Cui(崔美钰), Tinggui Zhang(张廷桂), Shao-Ming Fei(费少明). Chin. Phys. B, 2018, 27(3): 030302.
[10] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[11] Thermal efficiency of the principal greenhouse gases
A. Y. Galashev, O. R. Rakhmanova. Chin. Phys. B, 2015, 24(1): 010701.
[12] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[13] Existence of heteroclinic orbits in a novel three-order dynamical system
Hu Yu (胡瑀), Min Le-Quan (闵乐泉), Zhen Ping (甄平). Chin. Phys. B, 2013, 22(11): 110502.
[14] Distillability sudden death in a two qutrit systems under a thermal reservoir
Huang Jiang (黄江), Fang Mao-Fa (方卯发), Yang Bai-Yuan (杨百元), Liu Xiang (刘翔). Chin. Phys. B, 2012, 21(8): 084205.
[15] The effect of two-dimensional shear flow on the stability of a crystal interface in the supercooled melt
Cao Bin (曹斌), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东 ). Chin. Phys. B, 2012, 21(8): 086401.
No Suggested Reading articles found!