Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110502    DOI: 10.1088/1674-1056/22/11/110502
GENERAL Prev   Next  

Existence of heteroclinic orbits in a novel three-order dynamical system

Hu Yu (胡瑀), Min Le-Quan (闵乐泉), Zhen Ping (甄平)
Beijing University of Science and Technology, Beijing 100083, China
Abstract  In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Ši’lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type.
Keywords:  novel chaotic system      heteroclinic orbit      Ši’lnikov criterion      undetermined coefficient method  
Received:  06 February 2013      Revised:  16 April 2013      Accepted manuscript online: 
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170037 and 61074192).
Corresponding Authors:  Min Le-Quan     E-mail:  0605m@sina.com

Cite this article: 

Hu Yu (胡瑀), Min Le-Quan (闵乐泉), Zhen Ping (甄平) Existence of heteroclinic orbits in a novel three-order dynamical system 2013 Chin. Phys. B 22 110502

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Chen G and Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465
[3] Lü J and Chen G R 2002 Int. J. Bifurcat. Chaos 12 659
[4] Lü J H, Chen G and Cheng D 2004 Int. J. Bifurcat. Chaos 14 1507
[5] Liu C X, Liu T, Liu L and Liu K 2004 Chaos Soliton. Fract. 22 1031
[6] Dong E Z, Chen Z P, Chen Z Q and Yuan Z Z 2009 Chin. Phys. B 18 2680
[7] Si G Q, Cao H and Zhang Y B 2011 Chin. Phys. B 20 010509
[8] Jia H Y, Chen Z Q and Yuan Z Z 2010 Chin. Phys. B 19 020507
[9] Li C B, Chen S and Zhu H Q 2009 Acta Phys. Sin. 58 2255 (in Chinese)
[10] Ma S H, Fang J P, Ren Q B and Yang Z 2012 Chin. Phys. B 21 050511
[11] Liu Y and Tong X J 2012 Chin. Phys. B 21 090506
[12] Hossein G, Amir H and Azita A 2013 Chin. Phys. B 22 010503
[13] Han Q, Liu C X, Sun L and Zhu D R 2013 Chin. Phys. B 22 020502
[14] Li G L and Chen X Y 2009 Commun. Nonlinear Sci. 14 194
[15] Dong E Z, Chen Z Q, Chen Z P and Ni J Y 2012 Chin. Phys. B 21 030501
[16] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[17] Yu F, Wang C H, Yin J W and Xu H 2011 Chin. Phys. B 20 110505
[18] Sara D and Hamid R M 2010 Chin. Phys. B 19 060506
[19] Chen Z Q, Wu W J and Chen P F 2010 Chin. Phys. B 19 040509
[20] Chen Y and Yang Y Q 2010 Chin. Phys. B 19 120510
[21] Silva C P 1993 IEEE Trans. Circ. Syst. I 40 675
[22] Shil’nikov L P 1969 Sov. Math. B 10 1368
[23] Zhou T, Tang Y and Chen G R 2004 Int. J. Bifurcat. Chaos 14 3167
[24] Wang J W, Zhao M C, Zhang Y B and Xiong X H 2007 Physica A 375 438
[25] Zhou T, Chen G R and Člikovsky S 2005 Nonlinear Dyn. 39 319
[26] Zhou L and Chen F 2008 Chaos 18 013113
[27] El-Dessoky M M, Yassen M T, Saleh E and Aly E S 2012 Appl. Math. Comput. 218 11859
[28] Xu P C and Jing Z J 2000 Chaos Soliton. Fract. 11 853
[29] Li Z, Chen G R and Halang W A 2004 Inform. Sci. 165 235
[30] Elhadj Z 2008 Radio Eng. 17 9
[31] Jiang L and Sun J 2007 Chaos Soliton. Fract. 32 150
[32] Zhou L and Chen F 2009 Chaos Soliton. Fract. 40 1413
[33] Xu P C and Jing Z J 2011 J. Math. Anal. Appl. 376 103
[34] Antonio A, Fernando F S, Manuel M and Alejandro J R L 2012 Commun. Nonlinear Sci. 17 2708
[35] Zheng Z H and Chen G R 2012 J. Math. Anal. Appl. 392 102
[36] Tian R L, Yang X W, Cao Q J and Wu Q L 2012 Chin. Phys. B 21 020503
[1] A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators
Li Zhen-Bo (李震波), Tang Jia-Shi (唐驾时), Cai Ping (蔡萍). Chin. Phys. B, 2014, 23(12): 120501.
[2] The construction of homoclinic and heteroclinic orbitals in asymmetric strongly nonlinear systems based on the Pad'e approximant
Feng Jing-Jing(冯晶晶), Zhang Qi-Chang(张琪昌), and Wang Wei(王炜) . Chin. Phys. B, 2011, 20(9): 090202.
[3] Chaotification for a class of nonlinear systems
Liu Na(刘娜) and Guan Zhi-Hong(关治洪). Chin. Phys. B, 2009, 18(5): 1769-1773.
No Suggested Reading articles found!