Abstract The homotopy continuation method is used to solve the electrostatic boundary-value problems of strongly nonlinear composite media, which obey a current-field relation of J=$\sigma$ E+$\chi$|E|2E. With the mode expansion, the approximate analytical solutions of electric potential in host and inclusion regions are obtained by solving a set of nonlinear ordinary different equations, which are derived from the original equations with homotopy method. As an example in dimension two, we apply the method to deal with a nonlinear cylindrical inclusion embedded in a host. Comparing the approximate analytical solution of the potential obtained by homotopy method with that of numerical method, we can obverse that the homotopy method is valid for solving boundary-value problems of weakly and strongly nonlinear media.
Received: 30 January 2000
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.