Abstract This paper is devoted to the study of the underlying linearities of the coupled Harry--Dym (cHD) soliton hierarchy, including the well-known cHD equation. Resorting to the nonlinearization of Lax pairs, a family of finite-dimensional Hamiltonian systems associated with soliton equations are presented, constituting the decomposition of the cHD soliton hierarchy. After suitably introducing the Abel--Jacobi coordinates on a Riemann surface, the cHD soliton hierarchy can be ultimately reduced to linear superpositions, expressed by the Abel--Jacobi variables.
Received: 28 October 2005
Revised: 13 April 2006
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.