Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104501    DOI: 10.1088/1674-1056/22/10/104501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems

Cui Jin-Chao (崔金超)a, Liu Shi-Xing (刘世兴)b, Song Duan (宋端)c
a School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
b College of Physics, Liaoning University, Shenyang 110036, China;
c Physics of Medical Imaging Department, Eastern Liaoning University, Dandong 118001, China
Abstract  The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
Keywords:  autonomous systems      linear autonomous Birkhoff’      s equations      non-Hamiltonian systems      Whittaker’      s equations  
Received:  21 January 2013      Revised:  24 May 2013      Accepted manuscript online: 
PACS:  45.05.+x (General theory of classical mechanics of discrete systems)  
  02.30.Zz (Inverse problems)  
  45.10.-b (Computational methods in classical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 11172120, and 11202090).
Corresponding Authors:  Song Duan     E-mail:  songduan620606@163.com

Cite this article: 

Cui Jin-Chao (崔金超), Liu Shi-Xing (刘世兴), Song Duan (宋端) A necessary and sufficient condition for transforming autonomous systems into linear autonomous Birkhoffian systems 2013 Chin. Phys. B 22 104501

[1] Birkhoff’s G D 1927 Dynamical Systems (Providence R I: AMS College Publication)
[2] Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag)
[3] Guo Y X, Liu C and Liu S X 2011 Commun. Math. 18 21
[4] Guo Y X, Shang M and Luo S K 2003 Appl. Math. Mech. 24 62 (in Chinese)
[5] Mei F X, Shi R C, Zhang Y F and Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) (in Chinese)
[6] Hojman S and Urrutia L F 1981 J. Math. Phys. 22 1896
[7] Ding G T 2008 Acta Phys. Sin. 57 7415 (in Chinese)
[8] Cui J C, Song D and Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese)
[9] Zhang X W, Huang K F and Liu X K 2003 Acta Sci. Natur. Uni. Pek. 39 390
[10] Mei F X 2012 Mechanics in Engineering 34 62 (in Chinese)
[11] Zhang Y 2010 Chin. Phys. B 19 080301
[12] Luo S K and Cai J L 2003 Chin. Phys. 12 357
[13] Fu J L, Chen L Q and Xue Y 2003 Acta Phys. Sin. 52 256 (in Chinese)
[14] Chen X W 2002 Global Analysis of Birkhoffian System (Zhengzhou: Henan University Press) (in Chinese)
[15] Guo Y X, Liu C, Liu S X and Chang P 2009 Sci. China E 52 761
[16] Shang M and Mei F X 2009 Chin. Phys. B 18 3155
[17] Liu C, Liu S X and Guo Y X 2011 Sci. China: Tech. Sci. 54 2100
[18] Zhang X W, Wu J K, Zhu H P and Huang K F 2002 Appl. Math. Mech. 23 915 (in Chinese)
[19] Liu S X, Liu C and Guo Y X 2011 Acta Phys. Sin. 60 064501 (in Chinese)
[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Research on the discrete variational method for a Birkhoffian system
Liu Shi-Xing (刘世兴), Hua Wei (花巍), Guo Yong-Xin (郭永新). Chin. Phys. B, 2014, 23(6): 064501.
[3] Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid
Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop. Chin. Phys. B, 2014, 23(4): 048203.
[4] Complex Maxwell's equations
A. I. Arbab. Chin. Phys. B, 2013, 22(3): 030301.
[5] The periodic solutions for coupled integrable dispersionless equations
Liu Shi-Kuo(刘式适),Zhao Qiang(赵强),and Liu Shi-Da(刘式达) . Chin. Phys. B, 2011, 20(4): 040202.
[6] Influence of thermal stress on the characteristic parameters of AlGaN/GaN heterostructure Schottky contacts
Lü Yuan-Jie(吕元杰), Lin Zhao-Jun(林兆军), Zhang Yu(张宇), Meng Ling-Guo(孟令国), Cao Zhi-Fang(曹芝芳), Luan Chong-Biao(栾崇彪), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2011, 20(4): 047105.
[7] New finite-gap solutions for the coupled Burgers equations engendered by the Neumann systems
Chen Jin-Bing(陈金兵), Geng Xian-Guo(耿献国), and Qiao Zhi-Jun(乔志军). Chin. Phys. B, 2010, 19(9): 090403.
[8] Well-posedness of the time-varying linear electro-magnetic initial-boundary value problem
Xie Li(谢莉) and Lei Yin-Zhao(雷银照). Chin. Phys. B, 2007, 16(9): 2523-2536.
[9] Direct method of finding first integral of two-dimensional autonomous systems in polar coordinates
Lou Zhi-Mei (楼智美), Wang Wen-Long (汪文珑). Chin. Phys. B, 2006, 15(5): 895-898.
[10] The third-order Lagrange equation for mechanical systems of variable mass
Ma Shan-Jun (马善钧), Ge Wei-Guo (葛卫国), Huang Pei-Tian (黄沛天). Chin. Phys. B, 2005, 14(5): 879-881.
[11] Exact solutions for the coupled Klein--Gordon--Schr?dinger equations using the extended F-expansion method
He Hong-Sheng (何红生), Chen Jiang (陈江), Yang Kong-Qing (杨孔庆). Chin. Phys. B, 2005, 14(10): 1926-1931.
No Suggested Reading articles found!