Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070501    DOI: 10.1088/1674-1056/21/7/070501
GENERAL Prev   Next  

Fractional charges and fractional spins for composite fermions in quantum electrodynamics

Wang Yong-Long(王永龙)a)b)c)†, Lu Wei-Tao(卢伟涛)a)b), Jiang Hua(蒋华) a)b) Xu Chang-Tan(许长谭)a), and Pan Hong-Zhe(潘洪哲) a)b)
a Department of Physics, School of Science, Linyi University, Linyi 276005, China;
b Institute of Condensed Matter Physics, Linyi University, Linyi 276005, China;
c Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract  By using the Faddeev--Senjanovic path integral quantization method, we quantize the composite fermions in quantum electrodynamics (QED). In the sense of Dirac's conjecture, we deduce all the constraints and give Dirac's gauge transformations (DGT). According to that the effective action is invariant under the DGT, we obtain the Noether theorem at the quantum level, which shows the fractional charges for the composite fermions in QED. This result is better than the one deduced from the equations of motion for the statistical potentials, because this result contains both odd and even fractional numbers. Furthermore, we deduce the Noether theorem from the invariance of the effective action under the rotational transformations in 2-dimensional (x,y) plane. The result shows that the composite fermions have fractional spins and fractional statistics. These anomalous properties are given by the constraints for the statistical gauge potential.
Keywords:  constrained Hamiltonian systems      Faddeev--Senjanovic path integral quantization formalism      Noether theorem  
Received:  31 December 2011      Revised:  20 February 2012      Accepted manuscript online: 
PACS:  05.30.Pr (Fractional statistics systems)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
  11.15.Yc (Chern-Simons gauge theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047020 and 11047173), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011AM019, ZR2010AQ025, BS2010DS006, and Y200814), and the Scientific and Technological Development Project of Shandong Province, China (Grant No. J08LI56).
Corresponding Authors:  Wang Yong-Long     E-mail:  wangyonglong@lyu.edu.cn

Cite this article: 

Wang Yong-Long(王永龙), Lu Wei-Tao(卢伟涛), Jiang Hua(蒋华) Xu Chang-Tan(许长谭), and Pan Hong-Zhe(潘洪哲) Fractional charges and fractional spins for composite fermions in quantum electrodynamics 2012 Chin. Phys. B 21 070501

[1] Prange R E and Girvin S The Quantum Hall Effect (2nd edn.) 1990 (New York: Springer-Verlag)
[2] Girvin M and MacDonald A 1987 Phys. Rev. Lett. 58 1252
[3] Girvin M and MacDonald A 1987 Phys. Rev. Lett. 58 1
[4] Zhang S C, Hansson T H and Kivelson S 1989 Phys. Rev. Lett. 62 82
[5] Zhang S C, Hansson T H and Kivelson S 1989 Phys. Rev. Lett. 62 980
[6] Jain J K 1989 Phys. Rev. Lett. 63 199
[7] Jain J K 1989 Phys. Rev. B 40 8079
[8] Jain J K 1990 Phys. Rev. B 41 7653
[9] Jain J K, Kiveson S A and Trivedi N 1990 Phys. Rev. Lett. 64 1297
[10] Long Z W, Liu B and Li Z P 1997 High Energy Phys. Nucl. Phys. 21 34 (in Chinese)
[11] Lerda A 19992 Anyons (Berlin: Springer-Verlag)
[12] Dunne G 1995 Self-Dual Chern-Simons Theories (Berlin: Springer-Verlag)
[13] Li R J and Li Z P 2002 High Energy Phys. Nucl. Phys. 26 325 (in Chinese)
[14] Zhang Y and Li Z P 2004 Int. J. Theor. Phys. 43 1231
[15] Jiang J H and Li Z P 1999 High Energy Phys. Nucl. Phys. 23 784 (in Chinese)
[16] Zhang Y, Li A M and Li Z P 2005 Acta Phys. Sin. 54 2611 (in Chinese)
[17] Wang Y L, Xu C T and Li Z P 2006 Acta Phys. Sin. 55 2149 (in Chinese)
[18] Wang Y L, Xu C T, Chen L, Jiang T S and Chen H T 2008 Mod. Phys. Lett. B 22 45
[19] Jiang J H, Liu Y and Li Z P 2004 Int. J. Theor. Phys. 43 89
[20] Wang Y L and Li Z P 2004 Int. J. Theor. Phys. 43 1335
[21] Wang Y L and Li Z P 2004 High Energy Phys. Nucl. Phys. 24 696 (in Chinese)
[22] Zhang Y, Li A M and Li Z P 2005 Acta Phys. Sin. 54 1231 (in Chinese)
[23] Dirac P A M 1964 Lecture on Quantum Mechanics (New York: Yeshiva University Press)
[24] Cawley R 1979 Phys. Rev. Lett. 42 413
[25] Cawley R 1980 Phys. Rev. D 21 2988
[26] Frenkel A 1980 Phys. Rev. D 211986
[27] Li Z P 1991 J. Phys. A 24 4261
[28] Li Z P 1993 Chin. Phys. Lett. 10 68
[29] Wu B C 1993 Int. J. Theor. Phys. 33 1529
[30] Rothe H J 2002 Phys. Lett. B 539 296
[31] Rothe H J and Rothe K D 2004 Ann. Phys. 313 479
[32] Li Z P, Li A M, Jiang J H and Wang Y L 2005 Comm. Theor. Phys. 43 1115
[33] Wang Y L, Li Z P and Wang K 2009 Int. J. Theor. Phys. 48 1894
[34] Galvão C A P and Boechat J B T 1990 J. Math. Phys. 31 448
[35] Saito Y and Sugano R 1989 J. Math. Phys. 30 1122
[36] Li Z P 1991 J. Phys. A 24 4261
[37] Banerjee R, Rothe H J and Rothe K D 2000 Phys. Lett. B 479 429
[38] Li Z P and Jiang J H 2002 Symmetries in Constrained Canonical Systems (Beijing: Science Press)
[39] Wang Y L 2006 Int. J. Theor. Phys. 45 885
[40] Wilczek F 1982 Phys. Rev. Lett. 48 1144
[41] Wilczek F 1983 Phys. Rev. Lett. 51 2250
[42] Li Z P and Jiang J H 2010 Int. J. Theor. Phys. 49 564
[43] Zhang Y, Jiang J H, Li Z P, Du A M and Zhao X H 2011 Int. J. Theor. Phys. 50 3398
[44] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[1] First integrals of the axisymmetric shape equation of lipid membranes
Yi-Heng Zhang(张一恒), Zachary McDargh, Zhan-Chun Tu(涂展春). Chin. Phys. B, 2018, 27(3): 038704.
[2] The approximate conserved quantity of the weakly nonholonomic mechanical-electrical system
Liu Xiao-Wei(刘晓巍), Li Yuan-Cheng(李元成), and Xia Li-Li(夏丽莉) . Chin. Phys. B, 2011, 20(7): 070203.
[3] First integrals and stability of second-order differential equations
Xu Xue-Jun (许学军), Mei Feng-Xiang (梅凤翔). Chin. Phys. B, 2006, 15(6): 1134-1136.
[4] The symmetries in the Maxwell-Chern-Simons theory coupled to matter fields
Jiang Jin-Huan (江金环), Liu Yun (刘赟), Li Zi-Ping (李子平). Chin. Phys. B, 2004, 13(2): 153-158.
[5] Canonical symmetry properties of the constrained singular generalized mechanical system
Li Ai-Min (李爱民), Jiang Jin-Huan (江金环), Li Zi-Ping (李子平). Chin. Phys. B, 2003, 12(5): 467-471.
No Suggested Reading articles found!