Please wait a minute...
Chinese Physics, 2005, Vol. 14(5): 882-887    DOI: 10.1088/1009-1963/14/5/004
GENERAL Prev   Next  

Hojman's conservation theorems for generalized Raitzin canonical equations of motion

Qiao Yong-Fen (乔永芬)abc, Li Ren-Jie (李仁杰)bZhao Shu-Hong(赵淑红)c
a Department of Mechanical Engineering and Automation, Zhejiang Institute of Science and Technology, Hangzhou 310027, Chinab Faculty of Science Laiyang Agricultural College, Laiyang 265200,Chinac Engineering College of Northeast Agricultural University, Harbin 150030, China
Abstract  Using the Lie symmetry under infinitesimal transformations in which the time is not variable, Hojman’s conservation theorems for Raitzin’s canonical equations of motion in generalized classical mechanics are studied. The generalized Raitzin’s canonical equations of motion are established. The determining equations of Lie symmetry under infinitesimal transformations are given. The Hojman’s conservation theorems of the system are established. Finally, an example is also presented to illustrate the application of the result.
Keywords:  generalized classical mechanics      Hojman’s conservation theorem      Raitzin’s canonical equation      Lie symmetry  
Received:  26 May 2004      Revised:  22 January 2005      Accepted manuscript online: 
PACS:  0320  
  0200  
Fund: Project supported by the Heilongjiang Natural Science Foundation of China (Grant No. 9507)

Cite this article: 

Qiao Yong-Fen (乔永芬), Li Ren-Jie (李仁杰), Zhao Shu-Hong(赵淑红) Hojman's conservation theorems for generalized Raitzin canonical equations of motion 2005 Chinese Physics 14 882

[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[3] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[4] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[5] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[6] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[7] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[8] Symmetry of Hamiltonian and conserved quantity for a system of generalized classical mechanics
Zhang Yi(张毅). Chin. Phys. B, 2011, 20(3): 034502.
[9] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang(施沈阳) and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2011, 20(2): 021101.
[10] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[11] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[12] A new type of conserved quantity of Lie symmetry for the Lagrange system
Fang Jian-Hui(方建会). Chin. Phys. B, 2010, 19(4): 040301.
[13] Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration
Zhao Li(赵丽), Fu Jing-Li(傅景礼), and Chen Ben-Yong(陈本永). Chin. Phys. B, 2010, 19(1): 010301.
[14] Hojman's theorem of the third-order ordinary differential equation
ü Hong-Sheng(吕洪升), Zhang Hong-Bin(张宏彬), and Gu Shu-Long(顾书龙) . Chin. Phys. B, 2009, 18(8): 3135-3138.
[15] Perturbation to Lie symmetry and another type of Hojman adiabatic invariants for Birkhoffian systems
Ding Ning(丁宁), Fang Jian-Hui(方建会), and Chen Xiang-Xia(陈相霞) . Chin. Phys. B, 2008, 17(6): 1967-1971.
No Suggested Reading articles found!