Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090305    DOI: 10.1088/1674-1056/19/9/090305
GENERAL Prev   Next  

Fusion and fission solitons for the (2+1)-dimensional generalized Breor–Kaup system

Qiang Ji-Ye(强继业), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平)
College of Mathematics and Physics, Lishui University, Lishui 323000, China
Abstract  With a projective equation and a linear variable separation method, this paper derives new families of variable separation solutions (including solitory wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (2+1)-dimensional generalized Breor–Kaup (GBK) system. Based on the derived solitary wave excitation, it obtains fusion and fission solitons.
Keywords:  projective equation      GBK system      variable separation solutions      fusion and fission solitons  
Received:  12 November 2009      Revised:  11 December 2009      Accepted manuscript online: 
PACS:  0340  
  0200  
  0365  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y604106 and Y606252), and the Natural Science Foundation of Zhejiang Lishui University of China (Grant No. KZ09005).

Cite this article: 

Qiang Ji-Ye(强继业), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平) Fusion and fission solitons for the (2+1)-dimensional generalized Breor–Kaup system 2010 Chin. Phys. B 19 090305

[1] Lou S Y 1998 wxPhys. Rev. Lett.80 5027
[2] Tang X Y, Lou S Y and Zhang Y 2002 wxPhys. Rev. E66 046601
[3] Kivshar Y S and Melonmend B A 1989 wxRev. Mod. Phys.61 765
[4] Kadomtsev B B and Petviashvili V I 1970 wxSov. Phys. Dokl.15 539
[5] Davey A and Stewartson K 1974 wxProc. Roy. Soc.338 17
[6] Nizknik L P 1980 wxCommun. Sov. Phys. Dokl.27 249
[7] Lou S Y 1997 wxCommun. Theor. Phys.27 249
[8] Zhang D J 2003 wxChaos, Solitons and Fractals18 31
[9] Zhang D J 2005 wxChaos, Solitons and Fractals23 1333
[10] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 wxCommun. Theor. Phys.49 829
[11] Zhang S L and Lou S Y 2007 wxCommun. Theor. Phys.48 385
[12] Fang J P and Zheng C L 2005 wxChin. Phys.14 669
[13] Fang J P, Zheng C L and Zhu J M 2005 wxActa Phys. Sin.54 2990 (in Chinese)
[14] Ma S H and Fang J P 2006 wxActa Phys. Sin.55 5611 (in Chinese)
[15] Ma S H, Qiang J Y and Fang J P 2007 wxActa Phys. Sin.56 0620 (in Chinese)
[16] Ma S H, Fang J P and Ren Q B 2007 wxActa Phys. Sin.56 6784 (in Chinese)
[17] Ma S H, Wu X H, Fang J P and Zheng C L 2008 wxActa Phys. Sin.57 0011 (in Chinese)
[18] Ma S H, Wu X H, Fang J P and Zheng C L 2006 wxZ. Naturforsch.61a 249
[19] Ma S H, Fang J P and Zheng C L 2007 wxZ. Naturforsch.62a 8
[20] Ma S H, Qiang J Y and Fang J P 2007 wxCommun. Theor. Phys.48 662
[21] Ma S H, Fang J P and Zheng C L 2008 wxZ. Naturforsch.63a 121
[22] Ma S H, Fang J P and Zheng C L 2008 wxChin. Phys. B17 2767
[23] Ma S H, Fang J P and Zheng C L 2009 wxChaos, Solitons and Fractals40 210
[24] Ma S H, Fang J P, Hong B H and Zheng C L 2009 wxChaos, Solitons and Fractals40 1352
[25] Zhang S L, Wu B and Lou S Y 2002 wxPhys. Lett. A300 40
[26] Broer L J F 1975 wxAppl. Sci. Res.31 377
[27] Kaup D J 1975 wxProp. Theor. Phys.54 396
[28] Zakharov V E and Li J 1968 wxAppl. Mech. Tech. Phys. A9 190
[29] Chen C L and Li Y S 2002 wxCommun. Theor. Phys.38 129
[30] Boiti M, Leon J J P and Pempinelli F 1987 wxInverse Probl.3 371
[31] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 wxInverse Probl.31 125
[32] Ying J P and Lou S Y 2001 wxZ. Naturforsh.56(a) 619
[33] Zhang J F and Han P 2002 wxActa Phys. Sin.51 705 (in Chinese)
[34] Lou S Y 2002 wxJ. Phys. A35 10619
[35] Huang D J and Zhang H Q 2004 wxChaos, Solitons and Fractals23 601
[36] Zheng C L and Chen L Q 2005 wxChaos, Solitons and Fractals24 1347
[37] Zheng C L and Fang J P 2006 wxChaos, Solitons and Fractals27 1321
[38] Zhang J F, Guo G P and Wu F M 2002 wxChin. Phys.11 533
[39] Wang S, Xu Y S and Lou S Y 2003 wxChin. Phys.12 1049
[40] Durovsky V G and Konopelchenko E G 1994 wxJ. Phys. A21 4619
[1] Chaotic behaviors of the (2+1)-dimensional generalized Breor–Kaup system
Ma Song-Hua(马松华), Fang Jian-Ping(方建平), Ren Qing-Bao(任清褒), and Yang Zheng(杨征) . Chin. Phys. B, 2012, 21(5): 050511.
[2] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
Pan Zhen-Huan(潘震环), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平). Chin. Phys. B, 2010, 19(10): 100301.
No Suggested Reading articles found!