Please wait a minute...
Chinese Physics, 2003, Vol. 12(7): 714-720    DOI: 10.1088/1009-1963/12/7/304
GENERAL Prev   Next  

The bifurcation threshold value of the chaos detection system for a weak signal

Li Yue (李月)a, Yang Bao-Jun (杨宝俊)b, Du Li-Zhi (杜立志)a, Yuan Ye (袁野)a
a College of Communication Engineering, Jilin University, Changchun 130012, China; b College of Geo-Exploration Sciences and Technology, Jilin University, Changchun 130026, China
Abstract  Recently, it has become an important problem to confirm the bifurcation threshold value of a chaos detection system for a weak signal in the fields of chaos detection. It is directly related to whether the results of chaos detection are correct or not. In this paper, the discrimination system for the dynamic behaviour of a chaos detection system for a weak signal is established by using the theory of linear differential equation with periodic coefficients and computing the Lyapunov exponents of the chaos detection system; and then, the movement state of the chaos detection system is defined. The simulation experiments show that this method can exactly confirm the bifurcation threshold value of the chaos detection system.
Keywords:  chaos detection      bifurcation threshold value      weak signal      phase plane      Lyapunov exponent  
Received:  31 December 2002      Revised:  04 April 2003      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the Foundation for Development of Science and Technology of JiLin Province, China (Grant No 20020626).

Cite this article: 

Li Yue (李月), Yang Bao-Jun (杨宝俊), Du Li-Zhi (杜立志), Yuan Ye (袁野) The bifurcation threshold value of the chaos detection system for a weak signal 2003 Chinese Physics 12 714

[1] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[2] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[3] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[4] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[5] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[6] Implication of two-coupled tri-stable stochastic resonance in weak signal detection
Quan-Quan Li(李泉泉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2018, 27(3): 034203.
[7] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[8] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[9] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞). Chin. Phys. B, 2017, 26(3): 030502.
[10] A study of the early warning signals of abrupt change in the Pacific decadal oscillation
Wu Hao (吴浩), Hou Wei (侯威), Yan Peng-Cheng (颜鹏程), Zhang Zhi-Sen (张志森), Wang Kuo (王阔). Chin. Phys. B, 2015, 24(8): 089201.
[11] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[12] A perturbation method to the tent map based on Lyapunov exponent and its application
Cao Lv-Chen (曹绿晨), Luo Yu-Ling (罗玉玲), Qiu Sen-Hui (丘森辉), Liu Jun-Xiu (刘俊秀). Chin. Phys. B, 2015, 24(10): 100501.
[13] Effect of metal oxide arrester on the chaotic oscillations in the voltage transformer with nonlinear core loss model using chaos theory
Hamid Reza Abbasi, Ahmad Gholami, Seyyed Hamid Fathi, Ataollah Abbasi. Chin. Phys. B, 2014, 23(1): 018201.
[14] New predication of chaotic time series based on local Lyapunov exponent
Zhang Yong (张勇). Chin. Phys. B, 2013, 22(5): 050502.
[15] Stability of operation versus temperature of a three-phase clock-driven chaotic circuit
Zhou Ji-Chao (周继超), Hyunsik Son, Namtae Kim, Han Jung Song. Chin. Phys. B, 2013, 22(12): 120506.
No Suggested Reading articles found!