Please wait a minute...
Chinese Physics, 2001, Vol. 10(8): 683-688    DOI: 10.1088/1009-1963/10/8/302
GENERAL Prev   Next  

SIMILARITY REDUCTIONS OF THE (2+1)-DIMENSIONAL BURGERS SYSTEM

Liu Dang-bo (刘当波), Chu Kai-qin (储开芹)
Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  In this paper, using the direct method of the (2+1)-dimensional multi-component Burgers system, some types of similarity reductions are obtained. The corresponding group explanations of the reductions, Virasoro integrability and soliton solutions of Burgers system are also discussed.
Keywords:  Burgers system      similarity reduction      direct method      group explanation  
Received:  14 May 2000      Revised:  15 April 2001      Accepted manuscript online: 
PACS:  02.30.Cj (Measure and integration)  
  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 19573005 and 19573008), and the National Pandeng Plan of China

Cite this article: 

Liu Dang-bo (刘当波), Chu Kai-qin (储开芹) SIMILARITY REDUCTIONS OF THE (2+1)-DIMENSIONAL BURGERS SYSTEM 2001 Chinese Physics 10 683

[1] Enhancement of MAD/MIR phasing at low resolution and a new procedure for automatic phase extension
Pu Han(韩普), Yuan-Xin Gu(古元新), Wei Ding(丁玮), Hai-Fu Fan(范海福). Chin. Phys. B, 2019, 28(7): 076108.
[2] On the parameters for electrocaloric effect predicted by indirect method
Hong-Bo Liu(刘宏波). Chin. Phys. B, 2017, 26(11): 117701.
[3] Finite symmetry transformation group and localized structures of (2+1)-dimensional coupled Burgers equation
Lei Ya (雷娅), Yang Duo (杨铎). Chin. Phys. B, 2013, 22(4): 040202.
[4] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong (何俊荣), Li Hua-Mei (李画眉). Chin. Phys. B, 2013, 22(4): 040310.
[5] Invariance of Painlevé property for some reduced (1+1)-dimensional equations
Zhi Hong-Yan (智红燕), Chang Hui (常辉). Chin. Phys. B, 2013, 22(11): 110203.
[6] Approximate homotopy similarity reduction for the generalized Kawahara equation via Lie symmetry method and direct method
Liu Xi-Zhong(刘希忠). Chin. Phys. B, 2010, 19(8): 080202.
[7] New expression of bimodal phase distributions in direct-method phasing of protein single-wavelength anomalous diffraction data
Zhang Tao (张涛), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2010, 19(8): 086102.
[8] Approximate symmetry reduction for perturbed nonlinear Schr?dinger equation
Xie Shui-Ying(谢水英) and Lin Ji(林机). Chin. Phys. B, 2010, 19(5): 050201.
[9] Direct method of finding first integral of two-dimensional autonomous systems in polar coordinates
Lou Zhi-Mei (楼智美), Wang Wen-Long (汪文珑). Chin. Phys. B, 2006, 15(5): 895-898.
[10] Resolution improvement of electron micrographs by the direct method for biotin-binding protein streptavidin
Yang Shi-Xin (阳世新), Li Fang-Hua (李方华), Liu Yu-Dong (刘玉东), Wang Huai-Bin (王怀斌), Gu Yuan-Xin (古元新), Fan Hai-Fu (范海福). Chin. Phys. B, 2005, 14(1): 1-5.
[11] A certain critical two-soliton solution of the nonlinear Schr?dinger equation
Yan Jia-Ren (颜家壬), Pan Liu-Xian (潘留仙), Lu Jing (卢竞). Chin. Phys. B, 2004, 13(4): 441-444.
[12] Phasing of lysozyme using one-wavelength anomalous scattering of sulphur atoms through the combination of direct methods and density modification
Jiang Fan (江凡), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2003, 12(8): 890-894.
[13] Solving a superstructure from two-wavelength x-ray powder diffraction data - a simulation
Chen Jian-Rong (陈建荣), Gu Yuan-Xin (古元新), Fan Hai-Fu (范海福). Chin. Phys. B, 2003, 12(3): 310-314.
[14] Ab-initio determination of the incommensurate modulated structure of Bi-2212 from x-ray powder diffraction data -a simulation
Chen Jian-Rong (陈建荣), Gu Yuan-Xin (古元新), Zheng Chao-De (郑朝德), Fan Hai-Fu (范海福). Chin. Phys. B, 2003, 12(11): 1261-1265.
[15] An extension of the direct method and similarity reductions of a generalized Burgers equation with an arbitrary derivative function
Zhang Yu-Feng (张玉峰), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2002, 11(4): 319-322.
No Suggested Reading articles found!