Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 045203    DOI: 10.1088/1674-1056/ab718a
Special Issue: SPECIAL TOPIC — Ion beam technology
SPECIAL TOPIC—Ion beam technology Prev   Next  

Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX

Yuanyuan Liu(刘圆圆)1,2, Jianping Cheng(程建平)1,2, Pan Pang(庞盼)2, Bin Liao(廖斌)1,2, Bin Wu(吴彬)1,2, Minju Ying(英敏菊)1,2, Fengshou Zhang(张丰收)1,2, Lin Chen(陈琳)2, Shasha Lv(吕沙沙)1,2, Yandong Liu(刘言东)1,2, Tianxi Sun(孙天希)1,2
1 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China
Abstract  Herein we report a prototypical electronic substrate specifically designed to serve the weakly interacting massive particles (WIMPs) detectors at the China Dark Matter Experiment (CDEX). Because the bulky high-purity germanium (HPGe) detectors operate under liquid-nitrogen temperatures and ultralow radiation backgrounds, the desired electronic substrates must maintain high adhesivity across different layers in such cold environment and be free from any radioactive nuclides. To conquer these challenges, for the first time, we employed polytetrafluoroethylene ((C2F4)n) foil as the base substrate, in conjunction with ion implantation and deposition techniques using an independently developed device at Beijing Normal University for surface modification prior to electroplating. The remarkable peeling strengths of 0.88±0.06 N/mm for as-prepared sample and 0.75±0.05 N/mm for that after 2.5-days of soaking inside the liquid nitrogen were observed, while the regular standards commonly require 0.4 N/mm~ 0.6 N/mm for electronic substrates.
Keywords:  WIMPs detector      CDEX      surface modification      electronic substrate  
Received:  31 December 2019      Revised:  22 January 2020      Accepted manuscript online: 
PACS:  52.77.Dq (Plasma-based ion implantation and deposition)  
  95.35.+d (Dark matter)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
Fund: Project supported by the Central University Basic Scientific Research Business Expenses Special Funds under the project name of Research on Applied Physics under Low Radiation Background (Grant No. 2018NTST07) and the National Natural Science Foundation Joint Fund Key Project, China (Grant No. U1865206).
Corresponding Authors:  Bin Liao, Bin Wu     E-mail:  liaobingz@bnu.edu.cn;bwu6@bnu.edu.cn

Cite this article: 

Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希) Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX 2020 Chin. Phys. B 29 045203

[1] Baer H, Choi K Y, Kim J E and Roszkowski L 2015 Phys. Rep. 555 1
[2] Bertone G 2010 Nature 468 389
[3] Pospelov M, Ritz A and Voloshin M 2008 Phys. Lett. B 662 53
[4] Zurek K M 2009 Phys. Rev. D 79 115002
[5] Agnese R, Ahmed Z, Anderson A, Arrenberg S, Balakishiyeva D, Thakur R B, Bauer D, Billard J, Borgland A and Brandt D 2013 Phys. Rev. Lett. 111 251301
[6] Agnese R, Anderson A, Aramaki T, Asai M, Baker W, Balakishiyeva D, Barker D, Thakur R B, Bauer D and Billard J 2016 Phys. Rev. Lett. 116 071301
[7] Akerib D, Alsum S, Araújo H, Bai X, Bailey A, Balajthy J, Beltrame P, Bernard E, Bernstein A and Biesiadzinski T 2017 Phys. Rev. Lett. 118 251302
[8] Angloher G, Bento A, Bucci C, Canonica L, Erb A, von Feilitzsch F, Iachellini N F, Gorla P, Gütlein A and Hauff D 2014 Eur. Phys. J. C 74 3184
[9] Aprile E, Arisaka K, Arneodo F, Askin A, Baudis L, Behrens A, Bokeloh K, Brown E, Bruch T and Bruno G 2011 Phys. Rev. Lett. 107 131302
[10] Aprile E, Arisaka K, Arneodo F, Askin A, Baudis L, Behrens A, Bokeloh K, Brown E, Cardoso J and Choi B 2010 Phys. Rev. Lett. 105 131302
[11] Desai S, Ashie Y, Fukuda S, Fukuda Y, Ishihara K, Itow Y, Koshio Y, Minamino A, Miura M and Moriyama S 2004 Phys. Rev. D 70 083523
[12] Fu C, Zhou X, Chen X, Chen Y, Cui X, Fang D, Giboni K, Giuliani F, Han K and Huang X 2017 Phys. Rev. Lett. 119 181806
[13] Jiang H, Jia L, Yue Q, Kang K, Cheng J, Li Y, Wong H, Agartioglu M, An H and Chang J 2018 Phys. Rev. Lett. 120 241301
[14] Tan A, Xiao M, Cui X, Chen X, Chen Y, Fang D, Fu C, Giboni K, Giuliani F and Gong H 2016 Phys. Rev. Lett. 117 121303
[15] Kolská Z, Řezníčková A, Hnatowicz V and Švorčík V 2012 Vacuum 86 643
[16] Liao B, Yu J, Wang Y, Bian B, Jiang Q, Luo J, Zhang X, Wu X and Ying M 2017 Appl. Phys. A 123 544
[17] Liu C, Wu J, Ren L, Tong J, Li J, Cui N, Brown N and Meenan B 2004 Mater. Chem. Phys. 85 340
[18] Pachchigar V, Ranjan M and Mukherjee S 2019 Sci. Rep. 9 8675
[19] Pelletier J and Anders A 2005 IEEE Trans. Plasma Sci. 33 1944
[20] Švorčík V, Kotál V, Siegel J, Sajdl P, Macková A and Hnatowicz V 2007 Polym. Degrad. Stab. 92 1645
[21] Vesel A, Kovac J, Modic M and Mozetic M 2015 Appl. Surf. Sci. 357 1325
[22] Anders A 1997 Surf. Coat. Technol. 93 158
[23] Brice D K 1975 J. Appl. Phys. 46 3385
[24] Townsend P D, Kelly J C and Hartley N E W 1976 Ion implantation, sputtering and their applications (London: Academic Press)
[25] Xie W, Li Y, Li Y and Yue Q 2013 Chin. Phys. C 37 116001
[26] Xie W, Fu Y, Li Y, Li J, Li Y and Yue Q 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 774 120
[27] Zhang X, Niu S, Xie Y, Yan J, Lü J, Hu T, Wang Z, Cai X, Fang J and Yu B 2015 J. Instrum. 10 10043
[28] Pang P, et al. 2020 Spacecraft Environment Engineering Accepted (in Chinese)
[29] Ziegler F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[1] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[2] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[3] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[4] Composite magnetic nanoparticles:Synthesis and cancer-related applications
Cai Ping (蔡苹), Chen Hong-Min (陈洪敏), Xie Jin (谢晋). Chin. Phys. B, 2014, 23(11): 117504.
[5] A facile way to fabricate aluminum sheet with superhydrophobic and self-cleaning properties
Yang Zhou (杨周), Wu Yi-Zhi (吴以治), Ye Yi-Fan (叶逸凡), Gong Mao-Gang (公茂刚), Xu Xiao-Liang (许小亮). Chin. Phys. B, 2012, 21(12): 126801.
[6] High-performance n-channel organic thin-film transistors based on the dual effects of heterojunction and surface modification
Cao Jin(曹进), Hong Fei(洪飞), Xing Fei-Fei(邢菲菲), Gu Wen(顾文), Guo Xin-An(郭新安), Zhang Hao(张浩), Wei Bin(魏斌), Zhang Jian-Hua(张建华), and Wang Jun(王军). Chin. Phys. B, 2010, 19(3): 037106.
[7] Synthesis and photoluminescence properties of Nd2O3 nanoparticles modified by sodium bis(2-ethylhexyl) sulfosuccinate
Ren Jian-Hua (任建华), Zhao Tong-Gang (赵同刚), Liu Jian-Hua (刘建华), Kong Juan (孔娟), He Jia-Xin (贺加欣), Guo Lin (郭林). Chin. Phys. B, 2008, 17(12): 4669-4672.
[8] SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA
Wang Xin (邓慧华), Lu Zu-hong (汪昕), Deng Hui-hua (郁清), Yu Tsing (毛海舫), Mao Hai-fang (铃木敏重), Suzuki Toshishige (陆祖宏). Chin. Phys. B, 2001, 10(13): 59-64.
No Suggested Reading articles found!