Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 045202    DOI: 10.1088/1674-1056/ab75d1
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Tunability of Fano resonance in cylindrical core-shell nanorods

Ben-Li Wang(王本立)
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  The optical properties of cylindrical core-shell nanorods (CCSNs) are theoretically investigated in this paper. The results show that Fano resonance can be generated in CCSNs, and the wavelength and the intensity at Fano dip can be tuned respectively by adjusting the field coupling of cavity mode inside and near field on gold surface. The high tuning sensitivity which is about 400 nm per refractive-index unit can be obtained, and an easy-to-realize tunable parameter is also proposed. A two-oscillator model is also introduced to describe the generation of Fano resonance in CCSNs, and the results from this model are in good agreement with theoretical results. The CCSNs investigated in this work may have promising applications in optical devices.
Keywords:  Fano resonance      tunability      local surface plasmon resonance      optical devices  
Received:  17 December 2019      Revised:  22 January 2020      Accepted manuscript online: 
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11647021).
Corresponding Authors:  Ben-Li Wang     E-mail:  wangbenli@mail.buct.edu.cn

Cite this article: 

Ben-Li Wang(王本立) Tunability of Fano resonance in cylindrical core-shell nanorods 2020 Chin. Phys. B 29 045202

[1] Fano U 1961 Phys. Rev. 124 1866
[2] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[3] Mirin N J, Bao K and Norlander P 2009 J. Phys. Chem. A 113 4028
[4] Verellen N 2009 Nano Lett. 9 1663
[5] Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W and Ming N B 2008 Phys. Rev. Lett. 101 087401
[6] Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R and Wang M 2013 Phys. Rev. B 87 125136
[7] Bao K, Mirin N A and Nordlander P 2010 Appl. Phys. A 100 333
[8] Niu L, Zhang J B, Fu Y H, Kulkarni S and Luky'anchuk B 2011 Opt. Express 19 22974
[9] Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P and Halas N J 2012 Nano Lett. 12 1058
[10] Ye J, Wen F, Sobhani H, Lassiter J B, Dorpe P V, Nordlander P and Halas N J 2012 Nano Lett. 12 1660
[11] Mukherjee S, Sobhani H, Lassiter J B, Bardhan R, Nordlander P and Halas N J 2010 Nano Lett. 10 2694
[12] Li Y, Zhong F, Ding P, Chen Z, Luo F, Shao L, Du Y, Chen L and Lei M 2019 Nanotechnology 30 375401
[13] Wu X, Dou C, Xu W, Zhang G, Tian R and Liu H 2019 Chin. Phys. B 28 014204
[14] Lovera A, Gallinet B, Nordlander P and Martin O J F 2013 ACS Nano 7 4527
[15] Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112
[16] Fan S H, Suh W and Joannopouls J D 2003 J. Opt. Soc. Am. A 20 569
[17] Lee K L, Wu S H, Lee C W and Wei P K 2011 Opt. Express 19 24530
[18] King N S, Liu L, Yang X, Cerjan B, Everitt H O, Nordlander P and Halas N J 2015 ACS Nano 9 10628
[19] Thyagarajan K, Butet J and Martin O J F 2013 Nano Lett. 13 1847
[20] Fan J A, Wu C, Bao K, Bao J M, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[21] Jia Z Y, Li J N, Wu H W, Wang C, Chen T Y, Peng R W and Wang M 2016 J. Appl. Phys. 119 074302
[22] Averitt R D, Sarkar D and Halas N J 1997 Phys. Rev. Lett. 78 4217
[23] Mock J J, Barbic M, Smith D R, Schultz D A and Schultz S 2002 J. Chem. Phys. 116 6755
[24] Lassiter J B, H Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and N J Halas N J 2010 Nano Lett. 10 3184
[25] Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
[26] Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111
[27] Cao T, Wei C, Simpson R E, Zhang L and Cryan M J 2015 Sci. Rep. 4 4463
[28] Hao F, Nordlander P, Sonnerfraud Y, Dorpe P V and Maier S A 2009 ACS Nano 3 643
[29] Zhong H H, Zhou J H, Gu C J, Wang M, Fang Y T, Xu T and Zhou J 2017 Chin. Phys. B 26 127301
[30] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[1] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[2] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[3] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[4] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[5] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[6] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[9] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[10] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[11] Dynamically tunable terahertz passband filter based on metamaterials integrated with a graphene middle layer
MaoSheng Yang(杨茂生), LanJu Liang(梁兰菊), DeQuan Wei(韦德泉), Zhang Zhang(张璋), Xin Yan(闫昕), Meng Wang(王猛), JianQuan Yao(姚建铨). Chin. Phys. B, 2018, 27(9): 098101.
[12] Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Degang Xu(徐德刚), Longhuang Tang(唐隆煌), Yixin He(贺奕焮), Ci Song(宋词), Linyu Chen(陈霖宇), Changzhao Li(李长昭), Chao Yan(闫超), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114213.
[13] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[14] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[15] Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏). Chin. Phys. B, 2016, 25(5): 057303.
No Suggested Reading articles found!