Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034703    DOI: 10.1088/1674-1056/ab6835
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electrohydrodynamic behaviors of droplet under a uniform direct current electric field

Zi-Long Deng(邓梓龙)1, Mei-Mei Sun(孙美美)1, Cheng Yu(于程)1,2
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China;
2 Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu 96822, USA
Abstract  The electrohydrodynamic behaviors and evolution processes of silicone oil droplet in castor oil under uniform direct current (DC) electric field are visually observed based on a high-speed microscopic platform. Subsequently, the effects of different working conditions, such as electric field strength, droplet size, etc., on droplet behaviors are roundly discussed. It can be found that there are four droplet behavior modes, including Taylor deformation, typical oblique rotation, periodic oscillation, and fracture, which change with the increase of electric field strength. It is also demonstrated that the degree of flat ellipse deformation gets larger under a stronger electric field. Moreover, both of the stronger electric field and smaller droplet size lead to an increase in the rotation angle of the droplet.
Keywords:  DC electric field      droplet      deformation      rotation  
Received:  01 August 2019      Revised:  22 November 2019      Accepted manuscript online: 
PACS:  47.55.D- (Drops and bubbles)  
  68.05.-n (Liquid-liquid interfaces)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725602 and 51906039) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180405).
Corresponding Authors:  Cheng Yu     E-mail:  iamyucheng@seu.edu.cn

Cite this article: 

Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程) Electrohydrodynamic behaviors of droplet under a uniform direct current electric field 2020 Chin. Phys. B 29 034703

[1] Ha J W and Yang S M 1998 J. Colloid. Interf. Sci. 206 195
[2] Melcher J R and Taylor G I 1969 Ann. Rev. Fluid Mech. 1 111
[3] Zhang C B, Gao W, Zhao Y J and Chen Y P 2018 Appl. Phys. Lett. 113 203702
[4] Chen Y, Gao W, Zhang C and Zhao Y 2016 Lab. Chip 16 1332
[5] Huang H, Hong N, Liang H, Shi B C and Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese)
[6] Feng J Q 1999 Proc. R. Soc. A 455 2245
[7] Stone H A 1994 Ann. Rev. Fluid Mech. 26 65
[8] Wang J, Gao W, Zhang H, Zou M H, Chen Y P and Zhao Y J 2018 Sci. Adv. 4 eaat7392
[9] Shkadov V Y and Shutov A A 2002 Fluid Dyn. 37 713
[10] Zhang C, Yu F, Li X and Chen Y 2019 AIChE J. 65 1119
[11] Chen Y, Zhang C, Shi M and Yang Y 2010 AIChE J. 56 2018
[12] Cui Y, Wang N and Liu H 2019 Phys. Fluids 31 022105
[13] Nishiwaki T, Adachi K and Kotaka T 1988 Langmuir 4 170
[14] Taylor G 1966 Proc. R. Soc. Lond. A 291 159
[15] Bentenitis N and Krause S 2005 Langmuir 21 6194
[16] Dubash N and Mestel A J 2007 J. Fluid Mech. 581 469
[17] Das S P and Yoshimori A 2013 Phys. Rev. E 88 043008
[18] Allan R S and Mason S G 1962 Proc. R. Soc. Lond. A 267 45
[19] Torza S, Cox R G and Mason S G 1971 Philos. Trans. R. Soc. London Ser. A 269 295
[20] Tsukada T, Katayama T, Ito Y and Hozawa M 1993 J. Chem. Eng. Jpn. 26 698
[21] Ha J W and Yang S M 2000 Phys. Fluids 12 764
[22] Sato H, Kaji N, Mochizuki T and Mori Y H 2006 Phys. Fluids 18 127101
[23] Dodgson N and Sozou C 1987 Z. Angew. Math. Phys. 38 424
[24] Salipante P F and Vlahovska P M 2010 Phys. Fluids 22 112110
[25] Salipante P F and Vlahovska P M 2013 Phys. Rev. E 88 043003
[26] Vlahovska P M 2016 Phys. Rev. Fluids 1 060504
[27] Jones T B 1984 IEEE T. Ind. Appl. 20 845
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[3] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[4] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[5] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[6] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[7] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[8] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[9] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[10] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[11] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[12] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[13] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[14] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
[15] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
No Suggested Reading articles found!