Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030305    DOI: 10.1088/1674-1056/ab6c43
GENERAL Prev   Next  

Applicability of coupling strength estimation for linear chains of restricted access

He Feng(冯赫)1,2, Tian-Min Yan(阎天民)1, Yuhai Jiang(江玉海)1,2,3
1 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Abstract  The characterization of an unknown quantum system requires the Hamiltonian identification. The full access to the system, however, is usually restricted, hindering the direct retrieval of the relevant parameters, and a reliable indirect estimation is usually required. In this work, based on the reformulated form of the original algorithm of Burgarth et al. [Phys. Rev. A 79 020305 (2009)], the robustness of the estimation scheme against numerous sources of errors during the actual measurement is analyzed. The scheme is numerically studied for sites with a chain structure, exploring its applicability against observational errors including the limited signal-noise ratio and the finite spectral width. The spectral distribution of the end site is shown to determine the applicability of the method, and reducing the influence from truncated spectral components is critical to realize the robust reconstruction of the coupling strengths.
Keywords:  Hamiltonian estimation      spin chain      state transfer  
Received:  11 September 2019      Revised:  25 December 2019      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Wj (State reconstruction, quantum tomography)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by Shanghai Sailing Program, China (Grant No. 16YF1412600) and the National Natural Science Foundation of China (Grant Nos. 11420101003, 11604347, 11827806, 11874368, and 91636105).
Corresponding Authors:  Tian-Min Yan, Yuhai Jiang     E-mail:  yantm@sari.ac.cn;jiangyh@sari.ac.cn

Cite this article: 

He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海) Applicability of coupling strength estimation for linear chains of restricted access 2020 Chin. Phys. B 29 030305

[1] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[2] Bassett L C and Awschalom D D 2012 Nature 489 505
[3] Bose S 2003 Phys. Rev. Lett. 91 207901
[4] Giovannetti V, Lloyd S and Lorenzo Maccone 2006 Phys. Rev. Lett. 96 010401
[5] Giovannetti V, Lloyd S and Lorenzo Maccone 2011 Nat. Photon. 5 222
[6] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[7] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
[8] Cole J H 2015 New J. Phys. 17 101001
[9] Wang S T, Deng D L and Duan L M 2015 New J. Phys. 17 93017
[10] Kiukas J, Yuasa K and Burgarth D 2017 Phys. Rev. A 95 052132
[11] Liu J and Yuan H D 2017 Phys. Rev. A 96 012117
[12] Zhang J and Sarovar M 2014 Phys. Rev. Lett. 113 080401
[13] Zhang J and Sarovar M 2015 Phys. Rev. A 91 052121
[14] Hou S Y, Li H and Long G L 2017 Sci. Bull. 62 863
[15] Burgarth D and Ajoy A 2017 Phys. Rev. Lett. 119 030402
[16] Burgarth D, Maruyama K and Nori F 2009 Phys. Rev. A 79 020305
[17] Burgarth D and Maruyama K 2009 New J. Phys. 11 103019
[18] Bairey E, Arad I and Linder N H 2019 Phys. Rev. Lett. 122 020504
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[3] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[4] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[5] State transfer on two-fold Cayley trees via quantum walks
Xi-Ling Xue(薛希玲) and Yue Ruan(阮越). Chin. Phys. B, 2021, 30(2): 020304.
[6] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
[7] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[8] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[9] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
[10] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[11] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[12] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[13] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[14] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[15] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
No Suggested Reading articles found!