Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017304    DOI: 10.1088/1674-1056/28/1/017304
RAPID COMMUNICATION Prev   Next  

Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor

Shuopei Wang(王硕培)1,2, Congli He(何聪丽)1,3, Jian Tang(汤建)1,2, Rong Yang(杨蓉)1,4, Dongxia Shi(时东霞)1,2,4, Guangyu Zhang(张广宇)1,2,4,5
1 CAS Key Laboratory of Nanoscale Physics and Devices;Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China;
4 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

Synapse emulation is very important for realizing neuromorphic computing, which could overcome the energy and throughput limitations of today's computing architectures. Memristors have been extensively studied for using in nonvolatile memory storage and neuromorphic computing. In this paper, we report the fabrication of vertical sandwiched memristor device using ultrathin quasi-two-dimensional gallium oxide produced by squeegee method. The as-fabricated two-terminal memristor device exhibited the essential functions of biological synapses, such as depression and potentiation of synaptic weight, transition from short time memory to long time memory, spike-timing-dependent plasticity, and spike-rate-dependent plasticity. The synaptic weight of the memristor could be tuned by the applied voltage pulse, number, width, and frequency. We believe that the injection of the top Ag cations should play a significant role for the memristor phenomenon. The ultrathin of medium layer represents an advance to integration in vertical direction for future applications and our results provide an alternative way to fabricate synaptic devices.

Keywords:  gallium oxide      memristor      artificial synapse      synaptic plasticity  
Received:  25 October 2018      Revised:  14 November 2018      Accepted manuscript online: 
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  87.19.lv (Learning and memory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11834017), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB30000000), the Key Research Program of Frontier Sciences of the CAS (Grant No. QYZDB-SSW-SLH004), the National Key R&D Program of China (Grant No. 2016YFA0300904), and the Fundamental Research Funds for the Central Universities, China (Grant No. 310421101).

Corresponding Authors:  Congli He, Guangyu Zhang     E-mail:  conglihe@bnu.edu.cn;gyzhang@iphy.ac.cn

Cite this article: 

Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇) Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor 2019 Chin. Phys. B 28 017304

[1] Yegnanarayana B 2009 Artificial Neural Networks (PHI Learning Pvt. Ltd.)
[2] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M and Bolton A 2017 Nature 550 354
[3] Ananthanarayanan R, Esser S K, Simon H D and Modha D S 2009 Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis p. 63
[4] Indiveri G, Chicca E and Douglas R 2006 IEEE Trans. Neural Netw. 17 211
[5] Izhikevich E M and Edelman G M 2008 Proc. Natl. Academy Sci. 105 3593
[6] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[7] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H and Seo S 2011 Nat. Mater. 10 625
[8] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[9] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[10] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Nat. Mater. 10 591
[11] Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H and Tang W H 2015 Appl. Phys. Lett. 106 042105
[12] Guo D Y, Wu Z P, Zhang L J, Yang T, Hu Q R, Lei M, Li P G, Li L H and Tang W H 2015 Appl. Phys. Lett. 107 032104
[13] Aoki Y, Wiemann C, Feyer V, Kim H S, Schneider C M, Ill-Yoo H and Martin M 2014 Nat. Commun. 5 3473
[14] Hsu C W and Chou L J 2012 Nano Lett. 12 4247
[15] Gao X, Xia Y, Ji J, Xu H, Su Y, Li H, Yang C, Guo H, Yin J and Liu Z 2010 Appl. Phys. Lett. 97 193501
[16] Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S J, Yang J J, Wang P and Miao F 2018 Nat. Electron. 1 130
[17] Zhao H, Dong Z, Tian H, DiMarzi D, Han M G, Zhang L, Yan X, Liu F, Shen L, Han S J, Cronin S, Wu W, Tice J, Guo J and Wang H 2017 Advanced Mater. 29 1703232
[18] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500
[19] Huh W, Jang S, Lee J Y, Lee D, Lee D, Lee J M, Park H G, Kim J C, Jeong H Y, Wang G and Lee C H 2018 Adv. Mater. 30 e1801447
[20] Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q and Sun Y 2017 Advanced Mater. 29 1700906
[21] Cabrera N and Mott N F 1949 Rep. Prog. Phys. 12 163
[22] Regan M J, Tostmann H, Pershan P S, Magnussen O M, DiMasi E, Ocko B M and Deutsch M 1997 Phys. Rev. B 55 10786
[23] Zavabeti A, Ou J Z, Carey B J, Syed N, Orrell-Trigg R, Mayes E L, Xu C, Kavehei O, O'mullane A P and Kaner R B 2017 Science 358 332
[24] Lawrenz F, Lange P, Severin N, Rabe J P, Helm C A and Block S 2015 Langmuir 31 5836
[25] Carey B J, Ou J Z, Clark R M, Berean K J, Zavabeti A, Chesman A S, Russo S P, Lau D W, Xu Z Q, Bao Q, Kevehei O, Gibson B C, Dickey M D, Kaner R B, Daeneke T and Kalantar-Zadeh K 2017 Nat. Commun. 8 14482
[26] Syed N, Zavabeti A, Ou J Z, Mohiuddin M, Pillai N, Carey B J, Zhang B Y, Datta R S, Jannat A, Haque F, Messalea K A, Xu C, Russo S P, McConville C F, Daeneke T and Kalantar-Zadeh K 2018 Nat. Commun. 9 3618
[27] Kim D, Thissen P, Viner G, Lee D W, Choi W, Chabal Y J and Lee J B 2013 ACS Appl. Mater. Interfaces 5 179
[28] Hattori Y, Taniguchi T, Watanabe K and Nagashio K 2015 ACS Nano 9 916
[29] Shi Y, Liang X, Yuan B, Chen V, Li H, Hui F, Yu Z, Yuan F, Pop E, Wong H S P and Lanza M 2018 Nat. Electron. 1 458
[30] Yang Y and Huang R 2018 Nat. Electron. 1 274
[31] Caporale N and Dan Y 2008 Annu. Rev. Neuroscience 31 25
[32] Wang Z, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P and Li Z 2017 Nat. Mater. 16 101
[33] Chang T, Jo S H and Lu W 2011 ACS Nano 5 7669
[34] Kuzum D, Jeyasingh R G, Lee B and Wong H S P 2012 Nano Lett. 12 2179
[35] Bi G Q and Poo M M 1998 J. Neuroscience 18 10464
[36] Song S, Miller K D and Abbott L F 2000 Nat. Neuroscience 3 919
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[15] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!