Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120302    DOI: 10.1088/1674-1056/27/12/120302
GENERAL Prev   Next  

Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments

Jiong Cheng(程泂)1, Xian-Ting Liang(梁先庭)1, Wen-Zhao Zhang(张闻钊)2, Xiangmei Duan(段香梅)1
1 Department of Physics, Ningbo University, Ningbo 315211, China;
2 Beijing Computational Science Research Center(CSRC), Beijing 100193, China
Abstract  

The quantum state transfer between two membranes in coupled cavities is studied when the system is surrounded by non-Markovian environments. An analytical approach for describing non-Markovian memory effects that impact on the state transfer between distant membranes is presented. We show that quantum state transfer can be implemented with high efficiency by utilizing the experimental spectral density, and the performance of state transfer in non-Markovian environments is much better than that in Markovian environments, especially when the tunneling strength between the two cavities is not very large.

Keywords:  optomechanical systems      non-Markovian effect      quantum state transfer  
Received:  28 August 2018      Revised:  10 October 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704205, 11704026, 21773131, and 11574167), China Postdoctoral Science Foundation (Grant No. 2018M632437), the Natural Science Foundation of Ningbo City (Grant No. 2018A610199), and K C Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Jiong Cheng, Xiangmei Duan     E-mail:  chengjiong@nbu.edu.cn;duanxiangmei@nbu.edu.cn

Cite this article: 

Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅) Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments 2018 Chin. Phys. B 27 120302

[1] Zhou L, Han Y, Jing J and Zhang W 2011 Phys. Rev. A 83 052117
[2] Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett. 114 093602
[3] Wang M, Lü X Y, Wang Y D, You J Q and Wu Y 2016 Phys. Rev. A 94 053807
[4] Lü X Y, Zhu G L, Zheng L L and Wu Y 2018 Phys. Rev. A 97 033807
[5] Zoller P, Beth Th, Binosi D, et al. 2005 Eur. Phys. J. D 36 203
[6] Marquardt F and Girvin S M 2009 Physics 2 40
[7] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[8] Tian L and Wang H 2010 Phys. Rev. A 82 053806
[9] Safavi-Naeini A H and Painter O 2011 New J. Phys. 13 013017
[10] Nielsen M A and Chuang I I 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[11] Chang D E, Safavi-Naeini A H, Hafezi M and Painter O 2011 New J. Phys. 13 023003
[12] Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 14 125005
[13] Tian L 2012 Phys. Rev. Lett. 108 153604
[14] Wang Y D and Clerk A A 2012 New J. Phys. 14 105010
[15] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[16] Palomaki T A, Harlow J W, Teufel J D, Simmonds R W and Lehnert K W 2013 Nature 495 210
[17] Pei P, Huang H F, Guo Y Q, Zhang X Y and Dai J F 2018 Chin. Phys. B 27 024203
[18] Yousif T, Zhou W and Zhou L 2014 J. Mod. Opt. 61 1180
[19] Rao S, Hu X, Li L and Xu J 2015 J. Phys. B: At. Mol. Opt. Phys. 48 185501
[20] de Moraes Neto G D, Andrade F M, Montenegro V and Bose S 2016 Phys. Rev. A 93 062339
[21] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[22] Grröblacher S, Trubarov A, Prigge N, Cole G D, Aspelmeyer M and Eisert J 2015 Nat. Commun. 6 7606
[23] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[24] Cheng J, Zhang W Z, Han Y and Zhou L 2016 Sci. Rep. 6 23678
[25] Mu Q, Zhao X and Yu T 2016 Phys. Rev. A 94 012334
[26] Triana J F, Estrada A F and Pachón L A 2016 Phys. Rev. Lett. 116 183602
[27] Zhang W Z, Cheng J, Li W D and Zhou L 2016 Phys. Rev. A 93 063853
[28] Zhang W Z, Han Y, Xiong B and Zhou L 2017 New J. Phys. 19 083022
[29] Song J, Li C, Xia Y, Zhang Z J and Jiang Y Y 2017 J. Phys. B: At. Mol. Opt. Phys. 50 175502
[30] Li Y L and Fang M F 2011 Chin. Phys. B 20 100312
[31] Zhang W M, Lo P Y, Xiong H N, Tu M W Y and Nori F 2012 Phys. Rev. Lett. 109 170402
[32] Ciccarello F 2015 Phys. Rev. A 91 062121
[33] Cresser J D 1992 J. Mod. Opt. 39 2187
[34] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[35] Weiss U 2008 Quantum Dissipative Systems, 3rd edn. (Singapore: World Scientific Press)
[36] Schwinger J 1961 J. Math. Phys. 2 407
[37] Keldysh L V 1965 Sov. Phys. JETP 20 1018
[38] Jahne K, Yurke B and Gavish U 2007 Phys. Rev. A 75 010301
[39] Sete E A and Eleuch H 2015 Phys. Rev. A 91 032309
[40] Xiong H N, Zhang W M and Tu M W Y 2012 Phys. Rev. A 86 032107
[41] Scully M O and Zubairy M S 1997 Quantum Optics (Canbridge: Canbridge University Press)
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[4] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[5] Collapse-revival of squeezing of two atoms in dissipative cavities
Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 070305.
[6] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[7] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[8] High-dimensional quantum state transfer in a noisy network environment
Qin Wei (秦伟), Li Jun-Lin (李俊林), Long Gui-Lu (龙桂鲁). Chin. Phys. B, 2015, 24(4): 040305.
[9] The squeezing dynamics of two independent atoms by detuning in two non-Markovian environments
Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发), Yang Bai-Yuan (杨百元). Chin. Phys. B, 2013, 22(12): 120303.
[10] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao(吴超), Fang Mao-Fa(方卯发), Xiao Xing(肖兴), Li Yan-Ling(李艳玲), and Cao Shuai(曹帅). Chin. Phys. B, 2011, 20(2): 020305.
[11] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning(李宇宁), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(11): 110305.
[12] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发) . Chin. Phys. B, 2011, 20(10): 100312.
[13] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She(马宋设) and Chen Mei-Feng(陈美锋). Chin. Phys. B, 2009, 18(8): 3247-3250.
[14] Quantum communication in spin star configuration
Deng Hong-Liang(邓洪亮) and Fang Xi-Ming(方细明). Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!