Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 086101    DOI: 10.1088/1674-1056/23/8/086101
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

Zhou Ying (周颖), Wang Dao-Long (王道龙), Wang Chun-Lei (王春雷), Jin Xin-Xin (金新新), Qiu Jie-Shan (邱介山)
Carbon Research Laboratory, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
Abstract  Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC-OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC-OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC-SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC-OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC-OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.
Keywords:  boron-nitrogen co-doped porous carbon      asphaltene      preparation      supercapacitors  
Received:  04 September 2013      Revised:  28 January 2014      Accepted manuscript online: 
PACS:  61.43.Gt (Powders, porous materials)  
  81.05.U- (Carbon/carbon-based materials)  
  82.47.Uv (Electrochemical capacitors; supercapacitors)  
  81.02.-n  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21276045).
Corresponding Authors:  Zhou Ying     E-mail:  zhouying.dlut@dlut.edu.cn

Cite this article: 

Zhou Ying (周颖), Wang Dao-Long (王道龙), Wang Chun-Lei (王春雷), Jin Xin-Xin (金新新), Qiu Jie-Shan (邱介山) Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors 2014 Chin. Phys. B 23 086101

[1] Miller J R and Simon P 2008 Science 321 651
[2] Burke A 2000 J. Power Sources 91 37
[3] Frackowiak E and Béguin F 2001 Carbon 39 937
[4] Pandolfo A G and Hollenkamp A F 2006 J. Power Sources 157 11
[5] Kötz R and Carlen M 2000 Electrochim. Acta 45 2483
[6] Nian Y R and Teng H S 2002 J. Electrochem. Soc. 149 A1008
[7] Jurewicz K, Babel K, Żiólkowski A and Wachowska H 2003 Electrochim. Acta 48 1491
[8] Wang D W, Li F, Chen Z G, Lu G Q and Cheng H M 2008 Chem. Mater. 20 7195
[9] Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I, Suárez-García F, Tascon J M D and Lu G Q 2009 J. Am. Chem. Soc. 131 5026
[10] Seredych M and Bandosz T J 2013 J. Mater. Chem. A 1 11717
[11] Guo H L and Gao Q M 2009 J. Power Sources 186 551
[12] Konno H, Ito T, Ushiro M, Fushimi K and Azumi K 2010 J. Power Sources 195 1739
[13] Kwon T, Nishihara H, Itoi H, Yang Q H and Kyotani T 2009 Langmuir 25 11961
[14] Zhang W F, Huang Z H, Cao G P, Kang F Y and Yang Y S 2012 J. Phys. Chem. Solids 73 1428
[15] Tateishi D, Esumi K and Honda H 1991 Carbon 29 1296
[16] Ito H, Kono Y, Machida A, Mitsumoto Y, Omori K, Nakamura N, Kondo Y and Ishihara K 2003 Inorg. Chim. Acta 344 28
[17] Ozaki J I, Kimura N, Anahara T and Oya A 2007 Carbon 45 1847
[1] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[2] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[3] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[4] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[5] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[6] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[7] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[8] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[9] Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
Chong-Lin Jia(贾崇林), Chang-Chun Ge(葛昌纯), Qing-Zhi Yan(燕青芝). Chin. Phys. B, 2016, 25(2): 026103.
[10] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[11] Wavy structures for stretchable energy storage devices: Structural design and implementation
Lei Wen(闻雷), Ying Shi(石颖), Jing Chen(陈静), Bin Yan(严彬), Feng Li(李峰). Chin. Phys. B, 2016, 25(1): 018207.
[12] Efficient schemes of joint remote preparation with a passive receiver via EPR pairs
Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星). Chin. Phys. B, 2015, 24(11): 110308.
[13] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[14] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[15] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
No Suggested Reading articles found!