Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 058501    DOI: 10.1088/1674-1056/23/5/058501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

Qiao Shi-Zhu (乔士柱)a, Kang Shi-Shou (康仕寿)a, Qin Yu-Feng (秦羽丰)b, Li Qiang (李强)a, Zhong Hai (钟海)a, Kang Yun (康韵)a, Yu Shu-Yun (于淑云)a, Han Guang-Bing (韩广兵)a, Yan Shi-Shen (颜世申)a, Mei Liang-Mo (梅良模)a
a School of Physics and State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China;
b Department of Applied Physics, School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
Abstract  Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al2O3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect.
Keywords:  organic memory      resistance switching      copper phthalocyanine  
Received:  13 August 2013      Revised:  06 November 2013      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50971080, 11174183, and 50901043), the Program for New Century Excellent Talents of China (Grant No. NCET-10-0541), the Scientific Research Foundation for Returned Overseas Chinese Scholars, 111 Project (Grant No. B13029), the Natural Science Foundation of Shandong Province, China (Grant No. JQ201201), the Doctorate Foundation of Shandong Province, China (Grant No. BS2013CL042), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204164).
Corresponding Authors:  Kang Shi-Shou     E-mail:  skang@sdu.edu.cn
About author:  85.30.De; 73.40.Sx; 73.50.Gr

Cite this article: 

Qiao Shi-Zhu (乔士柱), Kang Shi-Shou (康仕寿), Qin Yu-Feng (秦羽丰), Li Qiang (李强), Zhong Hai (钟海), Kang Yun (康韵), Yu Shu-Yun (于淑云), Han Guang-Bing (韩广兵), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模) Multi-polar resistance switching and memory effect in copper phthalocyanine junctions 2014 Chin. Phys. B 23 058501

[1] Chen S F, Chen C Y, Yang Y, Xie J, Huang W, Shi H Y and Cheng F 2012 Chin. Phys. B 21 108506
[2] Zhou J L, Yu J S, Yu X G and Cai X Y 2012 Chin. Phys. B 21 027305
[3] Yang Q Q, Zhao S L, Xu Z, Zhang F, Yan G, Kong C, Fan X, Zhang Y F and Xu X R 2012 Chin. Phys. B 21 128402
[4] Wang H, Ji Z Y, Shang L W, Liu X H, Peng Y Q and Liu M 2011 Chin. Phys. B 20 087306
[5] Wu Q Y, Xie G H, Zhang Z S, Yue S Z, Wang P, Chen Y, Guo R D, Zhao Y and Liu S Y 2013 Acta Phys. Sin. 62 197204 (in Chinese)
[6] Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese)
[7] Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew A J, Gillin W P and Dediu V A 2013 Adv. Mater. 25 534
[8] Wang Y, Yang T, Xie J P, Lü W L, Fan G Y and Liu S 2013 Chin. Phys. B 22 077308
[9] Müller R, Naulaerts R, Billen J, Genoe J and Heremans P 2007 Appl. Phys. Lett. 90 063503
[10] Verbakel F, Meskers S C, Janssen R A, Gomes H L, Cölle M, Büchel M and de Leeuw D M 2007 Appl. Phys. Lett. 91 192103
[11] Lin J and Ma D G 2009 Org. Electron. 10 275
[12] Yu X G, Yu J S, Huang W and Zeng H J 2012 Chin. Phys. B 21 117307
[13] Wang W and Ma D G 2010 Chin. Phys. Lett. 27 018503
[14] Liu X H, Ji Z Y, Tu D Y, Shang L W, Liu J, Liu M and Xie C Q 2009 Org. Electron. 10 1191
[15] Rong J L, Chen Y H, Zhou J, Zhang X, Wang L and Cao J 2013 Acta Phys. Sin. 62 228502 (in Chinese)
[16] Reddy V S, Karak S, Ray S K and Dhar A 2009 Org. Electron. 10 138
[17] Kever T, Böttger U, Schindler C and Waser R 2007 Appl. Phys. Lett. 91 083506
[18] Kim T W, Yang Y, Li F S and Kwan W L 2012 NPG Asia Mater. 4 e18
[19] Weitz R T, Walter A, Engl R, Sezi R and Dehm C 2006 Nano Lett. 6 2810
[20] Gao L Y, Zhao S L, Xu Z, Zhang F J, Sun Q J, Zhang T H, Yan G and Xu X R 2011 Acta Phys. Sin. 60 037203 (in Chinese)
[21] Li Z L, Wu Z X, Jiao B, Mao G L and Hou X 2010 Chin. Phys. Lett. 27 067204
[22] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Huang J Z, Song D D, Zhu H N, Huang J Y and Xu X R 2008 Acta Phys. Sin. 57 5911 (in Chinese)
[23] Wang P, Guo R D, Chen Y, Yue S Z, Zhao Y and Liu S Y 2013 Acta Phys. Sin. 62 088801 (in Chinese)
[24] Tokuc H, Oguz K, Burke F and Coey J M D 2011 J. Phys.: Conf. Ser. 303 012097
[25] Nguyen T D, Ehrenfreund E and Vardeny Z V 2012 Science 337 204
[26] Michelfeit M, Schmidt G, Geurts J and Molenkamp L W 2008 Phys. Stat. Sol. 205 656
[27] Li G X, Sun S H, Wilson R J, White R L, Pourmand N and Wang S X 2006 Sensor. Actuat. A 126 98
[28] Stallinga P 2011 Adv. Mater. 23 3356
[29] Paascha G, Lindner T and Scheinert S 2002 Synth. Met. 132 97
[30] Lee P T, Chang T Y and Chen S Y 2008 Org. Electron. 9 916
[31] Cho B, Song S, Ji Y and Lee T 2010 Appl. Phys. Lett. 97 063305
[32] Verbakel F, Meskers S C J, Leeuw D M and Janssen R A J 2008 J. Phys. Chem. C 112 5254
[33] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[34] Wang M L, Zhou J, Gao X D, Ding B F, Shi Z, Sun X Y, Ding X M and Hou X Y 2007 Appl. Phys. Lett. 91 143511
[35] Ling Q D, Song Y, Lim S L, Teo E Y H, Tan Y P, Zhu C X, Chan D S H, Kwong D L, Kang E T and Neoh K G 2006 Angew. Chem. Int. Ed. 45 2947
[36] Yoshihiko S and Yoshiro S 1976 J. Chem. Soc. Faraday Trans. II 72 1911
[37] Peisert H, Knupfer M, Schwieger T, Auerhammer J M, Golden M S and Fink J 2002 J. Appl. Phys. 91 4872
[38] Knupfer M and Paasch G 2005 J. Vac. Sci. Technol. A 23 1072
[39] Kaname K, Masato H, Hisao I, Yukio O and Kazuhiko S 2012 Org. Electron. 13 309
[1] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[2] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[3] Threshold resistance switching in silicon-rich SiOx thin films
Da Chen(陈达), Shi-Hua Huang(黄仕华). Chin. Phys. B, 2016, 25(11): 117701.
[4] Bipolar resistance switching in the fully transparent BaSnO3-based memory device
Zhang Ting (张婷), Yin Jiang (殷江), Zhao Gao-Feng (赵高峰), Zhang Wei-Feng (张伟风), Xia Yi-Dong (夏奕东), Liu Zhi-Guo (刘治国). Chin. Phys. B, 2014, 23(8): 087304.
[5] Resistance switching in oxides with inhomogeneous conductivity
Shang Da-Shang (尚大山), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根), Wuttig Matthias. Chin. Phys. B, 2013, 22(6): 067202.
[6] Homogeneous interface-type resistance switching in Au/La0.67Ca0.33MnO3/SrTiO3/F:SnO2 heterojunction memories
Zhang Ting(张婷), Ding Ling-Hong(丁玲红), and Zhang Wei-Feng(张伟风) . Chin. Phys. B, 2012, 21(4): 047301.
[7] The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device
Liu Zi-Yu(刘紫玉), Zhang Pei-Jian(张培健), Meng Yang(孟洋), Li Dong(李栋), Meng Qing-Yu(孟庆宇), Li Jian-Qi(李建奇), and Zhao Hong-Wu(赵宏武) . Chin. Phys. B, 2012, 21(4): 047302.
[8] Interface-related switching behaviors of amorphous Pr0.67Sr0.33MnO3-based memory cells
Zhang Ting (张婷), Bai Ying (白莹), Jia Cai-Hong (贾彩虹), Zhang Wei-Feng (张伟风). Chin. Phys. B, 2012, 21(10): 107304.
[9] Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches
Meng Yang(孟洋), Zhang Pei-Jian(张培健), Liu Zi-Yu(刘紫玉), Liao Zhao-Liang(廖昭亮), Pan Xin-Yu(潘新宇), Liang Xue-Jin(梁学锦), Zhao Hong-Wu(赵宏武), and Chen Dong-Min(陈东敏). Chin. Phys. B, 2010, 19(3): 037304.
No Suggested Reading articles found!