Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(3): 878-882    DOI: 10.1088/1674-1056/17/3/024
GENERAL Prev   Next  

Numeral eddy current sensor modelling based on genetic neural network

Yu A-Long(俞阿龙)
Department of Electronic and Electrical Engineering, Huaiyin Teachers College, Huaian 223001, China
Abstract  This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.
Keywords:  modelling      numeral eddy current sensor      functional link neural network      genetic neural network  
Received:  15 July 2007      Revised:  22 August 2007      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  07.50.-e (Electrical and electronic instruments and components)  
Fund: Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China and by the Foundation of Huaiyin Teachers College Professor, China (Grant Nos 07KJD510027 and 06HSJS020).

Cite this article: 

Yu A-Long(俞阿龙) Numeral eddy current sensor modelling based on genetic neural network 2008 Chin. Phys. B 17 878

[1] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[2] High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks
Yong-Chao Jiang(姜永超), Gui-Xia Li(李桂霞), Gui-Feng Yu(于桂凤), Juan Wang(王娟), Shu-Lai Huang(黄树来), and Guo-Liang Xu(徐国亮). Chin. Phys. B, 2021, 30(11): 118105.
[3] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[4] Developments of parabolic equation method in the period of 2000-2016
Chuan-Xiu Xu(徐传秀), Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Jia-Qi Liu(刘佳琪), Shi-Zhao Zhang(张士钊). Chin. Phys. B, 2016, 25(12): 124315.
[5] A molecular dynamics study of the structural change differences between Au225 and Au369 clusters on MgO surfaces at low temperature
Zhang Lin(张林), Wang Shao-Qing(王绍青), and Chen Nan-Xian(陈难先) . Chin. Phys. B, 2012, 21(3): 033601.
[6] Modelling the spread of sexually transmitted diseases on scale-free networks
Liu Mao-Xing(刘茂省) and Ruan Jiong(阮炯). Chin. Phys. B, 2009, 18(6): 2115-2120.
[7] A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems
Yu Wen (张化光), Zhao Yan (赵 琰), Yang Dong-Sheng (余 文), Zhang Hua-Guang (杨东升). Chin. Phys. B, 2008, 17(11): 4056-4066.
[8] Light scattering of nanocrystalline TiO2 film used in dye-sensitized solar cells
Xiong Bi-Tao(熊必涛), Zhou Bao-Xue(周保学), Bai Jing(白晶), Zheng Qing(郑青), Liu Yan-Biao(刘艳彪), Cai Wei-Min(蔡伟民), and Cai Jun(蔡俊). Chin. Phys. B, 2008, 17(10): 3713-3719.
[9] Modelling of passively Q-switched lasers with intracavity Raman conversion
Su Fu-Fang(苏富芳), Zhang Xing-Yu(张行愚), Wang Qing-Pu(王青圃), Chang Jun(常军), Jia Peng(贾鹏), Li Shu-Tao(李述涛), Zhang Xiao-Lei(张晓磊), and Cong Zhen-Hua(丛振华). Chin. Phys. B, 2007, 16(11): 3370-3376.
[10] Cellular automata modelling of SEIRS
Liu Quan-Xing (刘权兴), Jin Zhen (靳祯). Chin. Phys. B, 2005, 14(7): 1370-1377.
[11] Nonlinear evolution characteristics of the climate system on the interdecadal-centennial timescale
Gao Xin-Quan (高新全), Zhang Wen (张文). Chin. Phys. B, 2005, 14(11): 2370-2378.
[12] Mathematical modelling of gain-switched RF-excited CO2 waveguide laser
Hussain Badran (巴德), Tian Zhao-Shuo (田兆硕), Wang Qi (王骐). Chin. Phys. B, 2004, 13(4): 501-504.
[13] Three-dimensional modelling of the flow and heat transfer in a laminar non-transferred arc plasma torch
Li He-Ping (李和平), Chen Xi (陈熙). Chin. Phys. B, 2002, 11(1): 44-49.
No Suggested Reading articles found!