1 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; 2 CNSA Macau Center for Space Exploration and Science, Macau, China; 3 Department of Physics, Nanjing University, Nanjing 210008, China; 4 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 5 Key Laboratory of Advanced Micro-Structure Materials(MOE), Tongji University, Shanghai 200092, China; 6 School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
Abstract The Maryland model is a critical theoretical model in quantum chaos. This model describes the motion of a spin-1/2 particle on a one-dimensional lattice under the periodical disturbance of the external delta-function-like magnetic field. In this work, we propose the linearly delayed quantum relativistic Maryland model (LDQRMM) as a novel generalization of the original Maryland model and systematically study its physical properties. We derive the resonance and antiresonance conditions for the angular momentum spread. The "characteristic sum" is introduced in this paper as a new measure to quantify the sensitivity between the angular momentum spread and the model parameters. In addition, different topological patterns emerge in the LDQRMM. It predicts some additions to the Anderson localization in the corresponding tight-binding systems. Our theoretical results could be verified experimentally by studying cold atoms in optical lattices disturbed by a linearly delayed magnetic field.
Fund: Project supported by the Science and Technology Development Fund (FDCT) of Macau, China (Grant Nos. 0014/2022/A1 and 0042/2018/A2) and the National Natural Science Foundation of China (Grant Nos. 11761161001, 12035011, and 11975167).
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强) Resonance and antiresonance characteristics in linearly delayed Maryland model 2022 Chin. Phys. B 31 120502
[1] Chirikov B V 1979 Phys. Rep.52 263 [2] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev. Lett.49 509 [3] Grempel D R, Prange R E and Fishman S 1984 Phys. Rev. A29 1639 [4] Grempel D R, Fishman S and Prange R E 1982 Phys. Rev. Lett.49 833 [5] Prange R E, Grempel D R and Fishman S 1984 Phys. Rev. B29 6500 [6] Simon B 1985 Ann. Phys.159 157 [7] Berry M 1984 Physica D10 369 [8] Altland A and Zirnbauer M R 1996 Phys. Rev. Lett.77 4536 [9] Dana I and Dorofeev D L 2006 Phys. Rev. E73 026206 [10] Casati G and Ford J 1979 Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Lecture Notes in Physics (Berlin, Heidelberg: Springer) [11] Khanna F and Matrasulov D 2006 Non-linear dynamics and fundamental interactions, chaotic dynamics of the relativistic kicked rotor (Dordrecht: Springer) [12] Sokolov V V, Zhirov O V, Alonso D and Casati G 2000 Phys. Rev. Lett.84 3566 [13] Billam T P and Gardiner S A 2009 Phys. Rev. A80 023414 [14] Zhang Z J, Tong P Q, Gong J B and Li B W 2012 Phys. Rev. Lett.108 070603 [15] Zhao W L, Gong J B, Wang W G, Casati G L, Liu J and Fu L B 2016 Phys. Rev. A94 053631 [16] Moore F L, Robinson J C, Bharucha C F, Sundaram B and Raizen M G 1995 Phys. Rev. Lett.75 4598 [17] D'Arcy M B, Godun R M, Oberthaler M K, Cassettari D and Summy G S 2001 Phys. Rev. Lett.87 74102 [18] Kanem J F, Maneshi S, Partlow M, Spanner M and Steinberg A M 2007 Phys. Rev. Lett.98 083004 [19] Duffy G J, Parkins S, Müller T, Sadgrove M, Leonhardt R and Wilson A C 2004 Phys. Rev. E70 056206 [20] Dittrich T and Graham R 1990 Europhys. Lett.11 589 [21] Ammann H, Gray R, Shvarchuck I and Christensen N 1998 Phys. Rev. Lett.80 4111 [22] Sadgrove M, Wimberger S, Parkins S and Leonhardt R 2005 Phys. Rev. Lett.94 174103 [23] Sadgrove M, Hilliard A, Mullins T, Parkins S and Leonhardt R 2004 Phys. Rev. E70 036217 [24] Williams M E, Sadgrove M P, Daley A J, Gray R N, Tan S M, Parkins A S, Christensen N and Leonhardt R 2004 J. Opt. B: Quantum Semiclass. Opt.6 28 [25] McDowall P, Hilliard A, McGovern M, Grünzweig T and Andersen M 2009 New J. Phys.11 123021 [26] Manai I, Clément J F, Chicireanu R, Hainaut C, Garreau J C, Szriftgiser P and Delande D 2015 Phys. Rev. Lett.115 240603 [27] Vant K, Ball G and Christensen N 2000 Phys. Rev. E61 5994 [28] Cohen D 1991 Phys. Rev. A43 639 [29] Ott E, Antonsen T M and Hanson J D 1984 Phys. Rev. Lett.53 2187 [30] Cohen D 1991 Phys. Rev. A44 2292 [31] Cohen D 1991 Phys. Rev. Lett.67 1945 [32] Shiokawa K and Hu B L 1995 Phys. Rev. E52 2497 [33] Schomerus H and Lutz E 2008 Phys. Rev. A77 062113 [34] Borgonovi F and Shepelyansky D L 1996 Europhys. Lett.35 517 [35] Cohen D 1994 J. Phys. A27 4805 [36] Dittrich T and Graham R 1990 Ann. Phys.200 363 [37] Dittrich T and Graham R 1990 Phys. Rev. A42 4647 [38] Dyrting S and Milburn G J 1995 Phys. Rev. A51 3136 [39] Benvenuto F, Casati G, Pikovsky A S and Shepelyansky D L 1991 Phys. Rev. A44 R3423 [40] Shepelyansky D L 1993 Phys. Rev. Lett.70 1787 [41] Pikovsky A S and Shepelyansky D L 2008 Phys. Rev. Lett.100 094101 [42] García-Mata I and Shepelyansky D L 2009 Phys. Rev. E79 026205 [43] Flach S, Krimer D O and Skokos C 2009 Phys. Rev. Lett.102 024101 [44] Mulansky M, Ahnert K, Pikovsky A and Shepelyansky D L 2009 Phys. Rev. E80 056212 [45] Ermann L and Shepelyansky D L 2014 J. Phys. A47 335101 [46] Mieck B and Graham R 2004 J. Phys. A37 L581 [47] Gligorić G, Bodyfelt J D and Flach S 2011 Europhys. Lett.96 30004 [48] Zhao Q F, Müller C A and Gong J B 2014 Phys. Rev. E90 022921 [49] Rozenbaum E B and Galitski V 2017 Phys. Rev. B95 064303 [50] Graham R and Kolovsky A R 1996 Phys. Lett. A222 47 [51] Klappauf B G, Oskay W H, Steck D A and Raizen M G 1998 Phys. Rev. Lett.81 1203 [52] d'Arcy M B, Godun R M, Oberthaler M K, Summy G S, Burnett K and Gardiner S A 2001 Phys. Rev. E64 056233 [53] Zhang C, Liu J, Raizen M G and Niu Q 2004 Phys. Rev. Lett.92 054101 [54] Gadway B, Reeves J, Krinner L and Schneble D 2013 Phys. Rev. Lett.110 190401 [55] Yu H C, Ren Z Z and Zhang X 2019 Chin. Phys. B28 020504
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.