Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 083101    DOI: 10.1088/1674-1056/ac6ee1
DATA PAPER Prev   Next  

Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule

Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  Calculations on the spectroscopic constants and transition properties of the first three states (${\rm a}^{1}\Delta $, ${\rm b}^{1}\Sigma^{+}$, and X$^{3}\Sigma^-$) of the SbH molecule were performed under the relativistic framework using the exact two-component Hamiltonian (X2C). The potential energy curves in the Franck-Condon region were computed and compared with the previous values. Furthermore, the transition dipole moments for the weak spin-forbidden transitions (${\rm b}0^{+}$-X$_{1}0^{+}$, ${\rm b}0^{+}$-X$_{2}$1, X$_{1}0^{+}$-X$_{2}$1, and X$_{2}$1-${\rm a}$2) were reported. The spontaneous radiative lifetime of the ${\rm b}^{1}\Sigma^{+}$ ($\upsilon '=0$) state was calculated as 163.5 $\pm$ 7.5 μs, which is in reasonable agreement with the latest experimental value of 173 $\pm$ 3 μs. The spontaneous radiative lifetimes of the X$_{2}$1 ($\upsilon '=0$) state and the ${\rm a}$2 ($\upsilon '=0$) state were calculated to be 48.6 s and $\sim 8 $ ms, respectively. Our study is expected to be a benchmark transition property computation for comparison with other theoretical and experimental results. The datasets presented in this paper, including the transition dipole moments, are openly available at https://dx.doi.org/10.11922/sciencedb.j00113.00018.
Keywords:  SbH      transition properties      radiative lifetimes  
Received:  06 March 2022      Revised:  06 May 2022      Accepted manuscript online:  12 May 2022
PACS:  31.15.A- (Ab initio calculations)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  33.70.Ca (Oscillator and band strengths, lifetimes, transition moments, and Franck-Condon factors)  
Fund: We are grateful for the computational support from the High Performance Computing Center (HPCC) of Jilin University and the high performance computing cluster Tiger@IAMP. Project supported by the National Natural Science Foundation of China (Grant No. 11874177).
Corresponding Authors:  Bing Yan     E-mail:  yanbing@jlu.edu.cn

Cite this article: 

Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰) Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule 2022 Chin. Phys. B 31 083101

[1] Schwerdtfeger P 2004 Relativistic Electronic Structure Theory Part 2. Applications (Amsterdam:Elsevier) pp. 2-6
[2] Hess B A 2003 Relativistic Effects in Heavy-Element Chemistry and Physics (Chichester:Wiley) pp. 71-73
[3] Tian H C, Xu L Q and Zhu L F 2018 Chin. Phys. B 27 043101
[4] Basco N and Yee K K 1968 Spectrosc. Lett. 1 13
[5] Bollmark P and Lindgren B 1974 Phys. Scr. 10 325
[6] Bollmark P, Lindgren B and Sassenberg U 1981 Phys. Scr. 24 542
[7] Urban R D, Essig K and Jones H 1993 J. Chem. Phys. 99 1591
[8] Wang X, Souter P F and Andrews L 2003 J. Phys. Chem. A 107 4244
[9] Yu S, Fu D, Shayesteh A, Gordon I E, Appadoo D R T and Bernath P 2005 J. Mol. Spectrosc. 229 257
[10] Beutel M, Setzer K D, Shestakov O and Fink E H 1996 J. Mol. Spectrosc. 179 79
[11] Shestakov O, Gielen R, Pravilov A M, Setzer K D and Fink E H 1998 J. Mol. Spectrosc. 191 199
[12] Alekseyev A B, Liebermann H P, Lingott R M, Bludsky O and Buenker R J 1998 J. Chem. Phys. 108 7695
[13] Liu Y, Ren X Y, Xiao Z Y and Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 258 107394
[14] Zhang X M, Yan P Y, Li R, Gai Z Q, Liang G Y, Xu H F and Yan B 2016 J. Quant. Spectrosc. Radiat. Transfer 180 154
[15] Xiao Z Y, Ren X Y, Liu Y and Yan B 2021 J. Quant. Spectrosc. Radiat. Transfer 267 107624
[16] Feng S, Shan S M, Guo H J, Xu H F and Yan B 2019 J. Phys. Chem. A 123 3435
[17] Xue J L, Yuan X, Li R, Liu X S, Xu H F and Yan B 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 241 118679
[18] Ren X Y, Xiao Z Y, Liu Y and Yan B 2021 Chin. Phys. B 30 053101
[19] Liu W and Peng D 2009 J. Chem. Phys. 131 031104
[20] Kutzelnigg W and Liu W 2005 J. Chem. Phys. 123 241102
[21] Liu W and Peng D 2006 J. Chem. Phys. 125 044102
[22] Peng D, Liu W, Xiao Y and Cheng L 2007 J. Chem. Phys. 127 104106
[23] Cheng L 2019 J. Chem. Phys. 151 104103
[24] Saue T, Bast R, Gomes A S P, Jensen H J A, Visscher L, Aucar I A, Remigio R D, Dyall K G, Eliav E, Faßhauer E, Fleig T, Halbert L, Hedegård E D, Helmich-Paris B, Iliaš M, Jacob C R, Knecht S, Laerdahl J K, Vidal M L, Nayak M K, Olejniczak M, Olsen J M H, Pernpointner M, Senjean B, Shee A, Sunaga A and Stralen J N P 2020 J. Chem. Phys. 152 204104
[25] Gomes A S P, Saue T, Visscher L, et al. 2019 DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19
[26] Dyall K G 2002 Theor. Chem. Acc. 108 335
[27] Dyall K G 2006 Theor. Chem. Acc. 115 441
[28] Dyall K G 2016 Theor. Chem. Acc. 135 128
[29] Fleig T, Olsen J and Visscher L 2003 J. Chem. Phys. 119 2963
[30] Fleig T, Jensen H, Olsen J and Visscher L 2006 J. Chem. Phys. 124 104106
[31] Visscher L 2002 J. Compt. Chem. 23 759
[32] Knecht S, Jensen H J Aa and Fleig T 2010 J. Chem. Phys. 132 014108
[33] Peterson K A, Woon D E and Dunning T H 1994 J. Chem. Phys. 100 7410
[34] Peterson K A, Lyons J R and Francisco J S 2006 J. Chem. Phys. 125 084314
[35] Deng D, Lian Y and Zou W 2017 Chem. Phys. Lett. 688 33
[36] Vasilyev V 2017 Comput. Theor. Chem. 1115 1
[37] Yang X, Xu H F and Yan B 2019 Chin. Phys. B 28 013203
[38] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167
[39] Bollmark P and Lindgren B 1967 Chem. Phys. Lett. 1 480
[40] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure (New York:Van Nostrand Reinhold Company) p. 572
[41] Balasubramanian K, Tanpipat N and Bloor J E 1987 J. Mol. Spectrosc. 124 458
[1] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
[2] Atomic structure and transition properties of H-like Al in hot and dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚), Hong-Bin Wang(王宏斌), Qian Sun(孙乾). Chin. Phys. B, 2017, 26(1): 013101.
No Suggested Reading articles found!