Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024701    DOI: 10.1088/1674-1056/ac11d8

Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation

He Wang(王贺)1, Fang-Bao Tian(田方宝)2, and Xiang-Dong Liu(刘向东)1,3,†
1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China;
2 School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia;
3 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Abstract  A phase-field-based lattice Boltzmann model is proposed for the interface capturing of multi-phase flows based on the conservative Allen-Cahn equation (ACE). By adopting the improved form of a relaxation matrix and an equilibrium distribution function, the time derivative t(φu) induced by recovering the diffusion term in ACE is eliminated. The conducted Chapman-Enskog analysis demonstrates that the correct conservative ACE is recovered. Four benchmark cases including Zalesak's disk rotation, vortex droplet, droplet impact on thin film, and Rayleigh-Taylor instability are investigated to validate the proposed model. The numerical results indicate that the proposed model can accurately describe the complex interface deformation.
Keywords:  lattice Boltzmann method      phase field      multiphase flow  
Received:  26 April 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.61.Jd (Multiphase flows)  
  47.11.Qr (Lattice gas)  
Corresponding Authors:  Xiang-Dong Liu     E-mail:

Cite this article: 

He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东) Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation 2022 Chin. Phys. B 31 024701

[1] Dbouk T and Drikakis D 2020 Phys. Fluids 32 053310
[2] Gao W and Chen Y 2019 Int. J. Heat Mass Tran. 135 158
[3] Gerritsen M G and Durlofsky L J 2005 Annu. Rev. Fluid Mech. 37 211
[4] Wu L Y, Liu L B, Han X T, Li Q W and Yang W B 2019 Chin. Phys. B 28 104702
[5] Gao W, Yu C and Yao F 2020 Chin. Phys. B 29 054702
[6] Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C and Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese)
[7] Zhao K, She Y Z, Jiang Y L, Qin J and Zhang Z H 2019 Acta Phys. Sin. 68 244401 (in Chinese)
[8] Liu H, Zhang Y and Valocchi A J 2015 Phys. Fluids 27 052103
[9] Ma J, Wang Z, Young J, Lai J C S, Sui Y and Tian F B 2020 J. Comput. Phys. 415 109487
[10] Xu L, Tian F B, Young J and Lai J C S 2018 J. Comput. Phys. 375 22
[11] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103
[12] Gunstensen A K, Rothman D H, Zaleski S and Zanetti G 1991 Phys. Rev. A 43 4320
[13] Liu H, Valocchi A J and Kang Q 2012 Phys. Rev. E 85 069901
[14] Wen Z X, Li Q, Yu Y and Luo K H 2019 Phys. Rev. E 100 023301
[15] Inamuro T, Konishi N and Ogino F 2000 Comput. Phys. Commun. 129 32
[16] Pooley C M and Furtado K 2008 Phys. Rev. E 77 046702
[17] Swift M R, Orlandini E, Osborn W R and Yeomans J M 1996 Phys. Rev. E 54 5041
[18] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[19] Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
[20] Zhang Q Y, Sun D K and Zhu M F 2017 Chin. Phys. B 26 084701
[21] Fakhari A and Rahimian M H 2010 Phys. Rev. E 81 036707
[22] Geier M, Fakhari A and Lee T 2015 Phys. Rev. E 91 063309
[23] He X Y, Chen S Y and Zhang R Y 1999 J. Comput. Phys. 152 642
[24] Lee T and Lin C L 2005 J. Comput. Phys. 206 16
[25] Liang H, Shi B C, Guo Z L and Chai Z H 2014 Phys. Rev. E 89 053320
[26] Ren F, Song B, Sukop M C and Hu H 2016 Phys. Rev. E 94 023311
[27] Zheng H W, Shu C and Chew Y T 2005 Phys. Rev. E 72 056705
[28] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353
[29] Zu Y Q and He S 2013 Phys. Rev. E 87 043301
[30] Huang H, Huang J J, Lu X Y and Sukop M C 2013 Int. J. Mod. Phys. C 24 1350021
[31] Chai Z, Sun D, Wang H and Shi B 2018 Int. J. Heat Mass Transfer 122 631
[32] Wang H L, Chai Z H, Shi B C and Liang H 2016 Phys. Rev. E 94 033304
[33] Liang H, Xu J, Chen J, Wang H, Chai Z and Shi B 2018 Phys. Rev. E 97 033309
[34] Marié S, Ricot D and Sagaut P 2009 J. Comput. Phys. 228 1056
[35] Xu H, Malaspinas O and Sagaut P 2012 J. Comput. Phys. 231 7335
[36] Xu H and Sagaut P 2011 J. Comput. Phys. 230 5353
[37] Chiu P H and Lin Y T 2011 J. Comput. Phys. 230 185
[38] Huang R and Wu H 2014 J. Comput. Phys. 274 50
[39] Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159
[40] Coppola G, Rocco G and de Luca L 2011 Phys. Fluids 23 022105
[41] Josserand C and Zaleski S 2003 Phys. Fluids 15 1650
[42] Rioboo R, Tropea C and Marengo M 2001 Atomizat. Sprays 11 155
[43] Ramaprabhu P, Dimonte G, Young Y N, Calder A C and Fryxell B 2006 Phys. Rev. E 74 066308
[44] Goncharov V N 2002 Phys. Rev. Lett. 88 134502
[45] Waddell J T, Niederhaus C E and Jacobs J W 2001 Phys. Fluids 13 1263
[46] Ding H, Spelt P D M and Shu C 2007 J. Comput. Phys. 226 2078
[47] Shao J Y and Shu C 2015 Int. J. Numer. Methods Fluids 77 526
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[4] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[5] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[6] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[7] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[8] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[9] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[12] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[13] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[14] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[15] Multi-bubble motion behavior of electric field based on phase field model
Chang-Sheng Zhu(朱昶胜), Dan Han(韩丹), Li Feng(冯力), Sheng Xu(徐升). Chin. Phys. B, 2019, 28(3): 034701.
No Suggested Reading articles found!